

		<u>ÍNDICE</u>
1.	INTRODUCCIÓN	1
2.	DESCRIPCIÓN GENERAL DE LAS ALTERNATIVAS	2
2.1.	DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS	2
3.	ALTERNATIVA 1. BAJO CALLE SANSÓN	4
3.1.	. DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS	4
3.2.	. LISTADOS	5
4.	ALTERNATIVA 2 SOBRE LA CALLE SANSÓN	10
4.1.	DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS	10
4.2.	LISTADOS	11
	ÉNDICE 1. PLANOS ÉNDICE 2. GRÁFICO ESPACIO/VELOCIDAD	

1. INTRODUCCIÓN

En el presente anejo, se realizará un análisis de las soluciones presentadas para el trazado de la vía en función de los parámetros descritos en la normativa N.R.V. 0.2.0.0 "Parámetros Geométricos".

Se presentan dos soluciones, que una vez concluidas las obras ambas discurrirán sobre suelo ferroviario o muy próximas a éste.

En el municipio de Sant Joan Despí las dos soluciones son muy similares, con un 30% soterrado y el 70 % en superficie.

En la zona correspondiente a Sant Feliu de Llobregat, la Alternativa 1, también denominada "Bajo calle Sansón" discurrirá en parte soterrada y en parte en superficie por terreno de uso ferroviario o adyacente a éste. Sin embargo, la Alternativa 2, o "Sobre calle Sansón" sólo discurrirá por zona urbana, en su mayor parte soterrada, a excepción de los primeros 200 metros.

2. DESCRIPCIÓN GENERAL DE LAS ALTERNATIVAS.

Se presentan a continuación los resultados obtenidos del análisis de trazado, realizado con el fin de justificar los parámetros finalmente adoptados para esta alternativa.

2.1. DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS

En todo momento se ha tenido en cuenta la Norma de RENFE Vía N.R.V. 0.2.0.0 "Parámetros Geométricos".

Para el estudio de las alternativas, se ha considerado un único eje de cálculo para planta y alzado, el correspondiente al de la plataforma, que es a la vez eje de simetría a lo largo de todo el tramo.

Siguiendo el criterio marcado en el Anejo de Antecedentes, se ha utilizado una velocidad de explotación de 120 km/h con parada en la estación, ajustando las curvas de transición a este condicionante.

El propio desarrollo del trabajo condujo al análisis de otras posibles velocidades de explotación en función del servicio, aunque finalmente se ha decidido mantener la velocidad inicial por ser la más restrictiva de las posibles.

Se ha trabajado finalmente con la hipótesis de circular con trenes Civia, cuya velocidad máxima es de 120 km/h.

Al final de este Anejo se incluyen tanto los listados de la geometría obtenidos del eje de la plataforma, como los de variables a tener en cuenta para el peralte propuesto.

Software utilizado

Para el desarrollo de los trabajos se han utilizado dos programas específicos adaptados al caso.

- Para el cálculo analítico, se ha utilizado el programa CLIPIII ver 1.23.8.10.
- Para la simulación de la marcha de los trenes, se ha utilizado el programa "MARCHAS TIPO"

A continuación se señalan las principales características de la aplicación informática.

Para el análisis de la salida de datos del programa CLIPIII, se ha utilizado el programa de simulación de circulación de trenes "MARCHAS TIPO", como instrumento básico y herramienta utilizada suficientemente contrastada, que permite la determinación de los tiempos de viaje, además de otros parámetros de interés para el análisis de la explotación, como: consumo energético, tiempos de paso entre estaciones, velocidad media, velocidad comercial, aceleraciones y deceleraciones, etc.

Este programa evalúa la marcha del tren a partir de las fórmulas de resistencia del material (resistencia al avance) y de la curva esfuerzo-velocidad del tren, mediante el cálculo por incrementos (o decrementos) finitos de la velocidad.

Los principales resultados, obtenidos a partir de dicha simulación, son los siguientes:

- Tiempos totales y parciales en el recorrido.
- Velocidades de paso por estaciones o puntos fijos.
- Tiempo concedido y velocidad comercial del tren.
- Tiempo y longitud recorrida a velocidad límite.
- Tiempo y longitud recorrida en tracción.
- Tiempo y longitud recorrida en frenado.

- Energía consumida en tracción (energía en llanta).
- Energía en frenado (energía en llanta).

Además, el programa indica en cada punto los valores momentáneos correspondientes al avance real del tren (tanto para la vía como para el propio tren):

- Características del tramo (pendiente equivalente).
- Resistencia al avance (función de la velocidad y de las características de la vía).
- Esfuerzo de tracción a la velocidad de circulación.
- Aceleración en tracción o en frenado (desaceleración) resultante.

Tren Civia sobre el que se ha realizado la simulación de las Marchas Tipo.

En las últimas páginas de este anejo se representa gráficamente la evolución del tren Civia con la geometría propuesta.

A partir de la gráfica se deduce que el tiempo de paso, es de 4 minutos y cinco segundos. A este tiempo hay que añadirle el que se estime como tiempo de parada.

CARACTERÍSTICAS DEL TREN CIVIA

Tipo de coches:

- · Coche extremo con cabina de conducción y piso alto (A1)
- · Coche intermedio con piso alto (A2)
- · Coche intermedio con W.C. y piso alto (A3)

Tipo de bogies:

- Bogies Extremo remolque (BR)
- Bogies intermedios motores y compartidos por dos coches (BM)

Tipo de Trenes CIVIA:

- Tren de dos coches (A1+ A2) y 3 bogies (2BM + 1BR) Serie 462
- Tren CIVIA de tres coches (A1+ A2+ A1) y 4 bogies (2BM + 2 BR) Serie 463
- Tren CIVIA de cuatro coches (A1+ A2+ A3+ A1) y 5 bogies (3BM + 2 BR)Serie 464
- Tren CIVIA de cinco coches (A1+ A2+ A3+ A2+ A1) y 6 bogies (4BM + 2 BR) Serie 465

	Serie 462	Serie 463	Serie 464	Serie 465
Tensión de alimentación (kVc.c.)	3	3	3	3
Ancho de vía (mts.)	1,668	1,668	1,668	1,668
Longitud total entre topes (mts.)	44,80	65,55	80,30	98,05
Anchura exterior (mts)	2,94	2,94	2,94	2,94
Altura máxima (mts)	4,26	4,26	4,26	4,26
Altura piso alto (mts)	1,15	1,15	1,15	1,15
Altura piso bajo (mts)		0,68	0,68	0,68
Diámetro rueda nueva (mts)	890	890	890	890
Empate bogie motor (mm)	2700	2700	2700	2700
Empate bogie remolque (mm)	2500	2500	2500	2500
Peso en tara (tn)	80,00	105,80	131,50	157,30
Potencia máxima en llanta (kW)	1.270	1.400	2.100	2.200
Velocidad máxima (km/h)	120	120	120	120
Aceleración (m/seg²): 0-; 40 km/h	1,1	1,0	1,1	1,1
Aceleración (m/seg²): 0-; 60 km/h	1,0	0,9	1,0	1,0
Aceleración (m/seg²): 0-: 120 km/h	0,6	0,5	0,6	0,5
Deceleración (m/seg²): con freno de Servicio (de 120 a 0 km/h)	1,10	1,10	1,10	1,10
Deceleración (m/seg²): con freno de urgencia (de 120 a 0 km/h)	1,30	1,30	1,30	1,30
Grado de deceleración de energía (aprox)	30%	30%	30%	30%
Plazas sentadas	126	169	223	277
Plazas totales (viajeros de pie/m)	414	607	832	997

3. ALTERNATIVA 1. BAJO CALLE SANSÓN.

3.1. DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS

Esta alternativa, requiere ejecutar el soterramiento bajo la calle Sansón con un tramo de túnel en mina (PK 88+394 a 88+950), lo que requiere alcanzar una mayor cota bajo calle que la alternativa 2

El trazado inicia con un ripado o desplazamiento de la vía existente hacia la derecha, entre los P. K. 87+365 y P. K. 87+542 y respetando el alzado actual, para discurrir por el pasillo ferroviario actual durante la mayor longitud posible, intentando alejarse de las viviendas existentes una vez pasada la riera de la Salut.

Con este condicionante, y considerando que el alzado no puede superar las 30 ‰, se define un pequeño tramo con una pendiente límite de 29,9 ‰. Esta pendiente deberá de ser motivo de futuros análisis con datos más precisos para mejorarla. Una vez alcanzada la montera necesaria para el inicio del túnel en mina, el siguiente condicionante es llegar a la estación soterrada con la rasante lo más superficial posible, facilitando la accesibilidad al usuario.

El tramo final, abarca desde la salida de la estación, situada en el P. K. 89+267, hasta el final del estudio, P. K. 90+320.

En alzado, se adopta una pendiente hasta 25 ‰ con objeto de no afectar al colector de Torreblanca al final del proyecto y no alcanzar la A-2.

En planta se ha retranqueado a la salida de la estación un metro hacia el lado montaña para minimizar afecciones. Se ha corregido este desfase en el tramo final del proyecto, mediante una curva y contra curva de radio 10.000. Dichas alineaciones estarán situadas fuera de la zona entre pantallas y sin afectar al paso bajo la A-2.

La salida del soterramiento queda definida en ambos lados por muros que van reduciendo su altura hasta convertirse en muros cajón y luego desaparecer (P. K. 90+090)

La transición de vía con carril embebido a vía sobre balasto se realiza mediante cuña de transición.

El tramo viene condicionado en primer lugar por la no alteración del régimen hidráulico de la riera Pahissa, y en segundo lugar por la no afección a la estructura de la autopista A-2.

3.2. <u>LISTADOS</u>

• Planta: puntos singulares

<u>Estación</u>	<u>Longitud</u>	Coord. X	Coord. Y	Acimut	<u>Radio</u>	Parám.	X Centro	Y Centro
87+118,500	41,824	419.451,937	4.583.567,082	164,4992				
87+365,837	247,337	419.582,826	4.583.357,215	164,4992	Infinito		Inicio de proyecto	
87+435,837	70,000	419.619,522	4.583.297,606	165,6133	2.000,000	374,166	417.904,254	4.582.269,084
87+670,861	235,024	419.728,278	4.583.089,411	173,0943	2.000,000		417.904,254	4.582.269,084
87+740,861	70,000	419.756,242	4.583.025,241	174,2084	Infinito	374,166		
88+112,240	371,379	419.902,618	4.582.683,925	174,2084	Infinito			
88+252,240	140,000	419.960,504	4.582.556,481	170,1572	-1.100,000	392,428	420.941,841	4.583.053,449
88+507,313	255,074	420.100,979	4.582.344,259	155,3949	-1.100,000		420.941,841	4.583.053,449
88+647,313	140,000	420.195,680	4.582.241,183	151,3437	Infinito	392,428		
88+677,313	30,000	420.216,419	4.582.219,506	151,5347	5.000,000	387,298	416.596,690	4.578.770,222
88+747,985	70,672	420.264,809	4.582.168,001	152,4345	5.000,000		416.596,690	4.578.770,222
88+778,223	30,238	420.285,313	4.582.145,776	152,6270	Infinito	388,832		
88+778,223	0,000	420.285,313	4.582.145,776	152,6270	Infinito			
88+808,223	30,000	420.305,559	4.582.123,638	153,2636	1.500,00	212,132	419.191,941	4.581.118,722
88+892,585	84,362	420.360,286	4.582.059,451	156,8441	1.500,00		419.191,941	4.581.118,722
88+922,585	30,000	420.378,944	4.582.035,959	157,4807	Infinito	212,132		
88+952,585	30,000	420.397,603	4.582.012,468	156,8441	-1.500,00	212,132	421.565,948	4.582.953,196
89+036,946	84,362	420.452,330	4.581.948,281	153,2636	-1.500,00		421.565,948	4.582.953,196
89+066,946	30,000	420.472,576	4.581.926,143	152,6270	Infinito	212,132		
89+296,909	229,963	420.628,338	4.581.756,965	152,6270	Infinito			
89+316,909	20,000	420.641,775	4.581.742,152	154,0417	450,000	94,868	420.304,030	4.581.444,783
89+389,460	72,551	420.685,131	4.581.684,078	164,3056	450,000		420.304,030	4.581.444,783
89+409,460	20,000	420.695,514	4.581.666,985	165,7203	Infinito	94,868		
90+089,460	680,000	421.044,230	4.581.083,207	165,7203	Infinito			
90+119,460	30,000	421.059,601	4.581.057,444	165,8158	10.000,00	547,723	412.466,943	4.575.942,150
90+174,914	55,454	421.087,835	4.581.009,716	166,1689	10.000,00		412.466,943	4.575.942,150
90+204,914	30,000	421.103,012	4.580.983,838	166,2644	Infinito	547,723		
90+234,914	30,000	421.118,189	4.580.957,960	166,1689	-10.000,00	547,723	429.739,081	4.586.025,526
90+290,386	55,472	421.146,432	4.580.910,216	165,8157	-10.000,00		429.739,081	4.586.025,526
90+320,386	30,000	421.161,804	4.580.884,454	165,7202	Infinito	547,723	Final de proyecto	
90+517,428	197,042	421.262,851	4.580.715,294	165,7202	Infinito			

• Alzado: vértices y puntos singulares

<u>Ver.</u>	Esta./Cota	TE/TS	Cota TE/TS	Pente.(%)E/S	L/Flecha	Kv/Theta(%)
1	86+812,363 27,375	86+812,363	27,375	0,2670		
2	86+879,363	86+869,875	27,529	0,2670	18,975	-7.500,000
	27,554	86+888,850	27,555	0,0140	-0,006	-0,2530
3	87+111,788 27,586	87+095,100 87+128,475	27,584 27,663	0,0140 0,4590	33,375 0,019	7.500,000 0,4450
	21,500	07+120,475	27,003	0,4030	0,019	0,4430
4	87+301,686	87+267,452	28,301	0,4590	68,467	-7.000,000
	28,458	87+335,919	28,280	-0,5191	-0,084	-0,9781
5	87+445,109	87+428,235	27,801	-0,5191	33,749	7.000,000
	27,714	87+461,984	27,707	-0,0370	0,020	0,4821
6	87+630,510	87+590,165	27,660	-0,0370	80,690	4.000,000
	27,645	87+670,855	28,444	1,9803	0,203	2,0173
7	87+820,000	87+727,007	29,556	1,9803	185,985	-4.000,000
	31,397	87+912,992	28,915	-2,6693	-1,081	-4,6496
8	88+325,000	88+299,774	18,591	-2,6693	50,452	30.000,000
	17,917	88+350,225	17,286	-2,5012	0,011	0,1682
9	88+658,000	88+493,263	13,709	-2,5012	329,473	6.000,000
	9,588	88+822,736	14,514	2,9901	2,262	5,4912
10	89+010,000	88+953,650	18,429	2,9901	112,700	-4.000,000
	20,113	89+066,349	20,211	0,1726	-0,397	-2,8175
11	89+632,076	89+595,897	21,125	0,1726	72,358	4.000,000
	21,187	89+668,255	21,904	1,9815	0,164	1,8089
12	89+768,000	89+757,588	23,674	1,9815	20,823	4.000,000
	23,880	89+778,411	24,141	2,5021	0,014	0,5206
13	90+137,638	90+048,650	30,902	2,5021	177,977	-6.000,000
	33,129	90+226,627	32,716	-0,4642	-0,660	-2,9663
14	90+258,097	90+251,773	32,599	-0,4642	12,648	10.000,000
	32,570	90+264,421	32,549	-0,3377	0,002	0,1265
15	90+353,139 32,249	90+350,908	32,256	-0,3377		

Nº DE CURVA	1
P. K. INICIO CURVA DE TRANSICIÓN	87+365,837
P. K. FINAL CURVA DE TRANSICIÓN	87+740,861

Radio	2000	m
Velocidad máxima	120	km/h
Velocidad mínima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel. sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	55	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

PARÁMETROS RESULTANTES

Aceleración sin compensar negativa	0,23	m/s²
Aceleración sin compensar positiva	0,25	m/s²
Curva de transición	50	m
Parámetro de la curva de transición	316	
Exceso de peralte	41	mm
Insuficiencia de peralte	44	mm
Variación del peralte	36,67	mm/s
Variación de la insuf. de peralte	29,33	mm/s
Pendiente del diagrama de peraltes	1,10	mm/m
Máx. variación de la Asc	0,17	m/s²

Nº DE CURVA	2
P. K. INICIO CURVA DE TRANSICIÓN	88+112,240
P. K. FINAL CURVA DE TRANSICIÓN	88+647,313

HIPÓTESIS DE PARTIDA

Radio	-1100	m
Velocidad máxima	120	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	100	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

Aceleración sin compensar negativa	0,42	m/s²
Aceleración sin compensar positiva	0,45	m/s²
Curva de transición	80	m
Parámetro de la curva de transición	297	m
Exceso de peralte	75	mm
Insuficiencia de peralte	79	mm
Variación del peralte	41,67	mm/s
Variación de la insuf. de peralte	32,92	mm/s
Pendiente del diagrama de peraltes	1,25	mm/m
Máx. variación de la Asc	0,19	m/s²

Nº DE CURVA	3
P. K. INICIO CURVA DE TRANSICIÓN	88+647,313
P. K. FINAL CURVA DE TRANSICIÓN	88+778,223

Radio	5000	m
Velocidad máxima	120	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	20	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

PARÁMETROS RESULTANTES

Aceleración sin compensar negativa	0,08	m/s²
Aceleración sin compensar positiva	0,11	m/s²
Curva de transición	20	m
Parámetro de la curva de transición	316	
Exceso de peralte	14	mm
Insuficiencia de peralte	19	mm
Variación del peralte	33,33	mm/s
Variación de la insuf. de peralte	31,67	mm/s
Pendiente del diagrama de peraltes	1,00	mm/m
Máx. variación de la Asc	0,18	m/s²

Nº DE CURVA	4
P. K. INICIO CURVA DE TRANSICIÓN	88+778,223
P. K. FINAL CURVA DE TRANSICIÓN	88+922,585

HIPÓTESIS DE PARTIDA

Radio	1500	m
Velocidad máxima	80	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	20	mm
Max. Pend. Diagrama de peralte	2,25	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

Aceleración sin compensar negativa	0,01	m/s²
Aceleración sin compensar positiva	0,21	m/s²
Curva de transición	30	m
Parámetro de la curva de transición	212	
Exceso de peralte	2	mm
Insuficiencia de peralte	38	mm
Variación del peralte	14,81	mm/s
Variación de la insuf. de peralte	28,15	mm/s
Pendiente del diagrama de peraltes	0,67	mm/m
Máx. variación de la Asc	0,16	m/s²

Nº DE CURVA	5
P. K. INICIO CURVA DE TRANSICIÓN	88+922,585
P. K. FINAL CURVA DE TRANSICIÓN	89+066,946

Radio	-1500	m
Velocidad máxima	80	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	20	mm
Max. Pend. Diagrama de peralte	2,25	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

PARÁMETROS RESULTANTES

Aceleración sin compensar negativa	0,01	m/s²
Aceleración sin compensar positiva	0,21	m/s²
Curva de transición	30	m
Parámetro de la curva de transición	212	
Exceso de peralte	2	mm
Insuficiencia de peralte	38	mm
Variación del peralte	14,81	mm/s
Variación de la insuf. de peralte	28,15	mm/s
Pendiente del diagrama de peraltes	0,67	mm/m
Máx. variación de la Asc	0,16	m/s²

Nº DE CURVA	6
P. K. INICIO CURVA DE TRANSICIÓN	89+296,909
P. K. FINAL CURVA DE TRANSICIÓN	89+409,460

HIPÓTESIS DE PARTIDA

Radio	450	m
Velocidad máxima	50	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	40	mm
Max. Pend. Diagrama de peralte	2,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

Aceleración sin compensar negativa	0,00	m/s²
Aceleración sin compensar positiva	0,20	m/s²
Curva de transición	20	m
Parámetro de la curva de transición	95	
Exceso de peralte	0	mm
Insuficiencia de peralte	36	mm
Variación del peralte	27,78	mm/s
Variación de la insuf. de peralte	25,00	mm/s
Pendiente del diagrama de peraltes	2,00	mm/m
Máx. variación de la Asc	0,14	m/s²

Nº DE CURVA	7
P. K. INICIO CURVA DE TRANSICIÓN	90+089,460
P. K. FINAL CURVA DE TRANSICIÓN	90+204,914

,		
Radio	10000	m
Velocidad máxima	120	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	0	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

PARÁMETROS RESULTANTES

Aceleración sin compensar negativa	0,00	m/s²
Aceleración sin compensar positiva	0,11	m/s²
Curva de transición	20	m
Parámetro de la curva de transición	447	
Exceso de peralte	0	mm
Insuficiencia de peralte	20	mm
Variación del peralte	0,00	mm/s
Variación de la insuf. de peralte	33,33	mm/s
Pendiente del diagrama de peraltes	0,00	mm/m
Máx. variación de la Asc	0,19	m/s²

Nº DE CURVA	8
P. K. INICIO CURVA DE TRANSICIÓN	90+204,914
P. K. FINAL CURVA DE TRANSICIÓN	90+320,386

HIPÓTESIS DE PARTIDA

Radio	-10000	m
Velocidad máxima	120	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	0	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m

Aceleración sin compensar negativa	0,00	m/s²
Aceleración sin compensar positiva	0,11	m/s²
Curva de transición	20	m
Parámetro de la curva de transición	447	
Exceso de peralte	0	mm
Insuficiencia de peralte	20	mm
Variación del peralte	0,00	mm/s
Variación de la insuf. de peralte	33,33	mm/s
Pendiente del diagrama de peraltes	0,00	mm/m
Máx. variación de la Asc	0,19	m/s²

4. ALTERNATIVA 2 SOBRE LA CALLE SANSÓN

Se presentan a continuación los resultados obtenidos del análisis de trazado que justifica los parámetros adoptados para esta alternativa.

4.1. DESCRIPCIÓN. PARÁMETROS GEOMÉTRICOS

El trazado se inicia en el puente existente sobre la carretera de Sansón, mediante un radio en planta a izquierdas de valor 1.205 m el trazado sigue el de la vía actual hasta alcanzar la recta de la estación de Sant Feliu; en ella, el nuevo eje es paralelo y está separado de aquél 1,0 m hacia el lado río con objeto de evitar la afección a un muro que se encuentra hacia el P. K. 88+960, en el lado montaña.

Atendiendo al perfil longitudinal, la rasante proyectada abandona el perfil existente hacia el P. K. 88+320, en el puente sobre la carretera de Sansón, que se mantiene en su situación actual.

A partir de un acuerdo vertical, la rasante avanza con una pendiente de 18 ‰ y la vía comienza a soterrarse, y en el P. K. 88+480 se inicia la cobertura mediante una losa de hormigón armado, lo que permite dar continuidad en superficie a las calles Picaso y L'Hospitalet.

En el P. K. 88+900, disminuye la pendiente longitudinal hasta 2,5 ‰, mediante un acuerdo vertical cóncavo, zona que se aprovecha para disponer los andenes de la estación (P. K. 89+000 al P. K. 89+240).

Previamente, hacia el P. K. 88+715 la traza cruza sobre la riera de la Salut.

En la actualidad existe un colector de 3,25 m de diámetro enterrado a gran profundidad, que canaliza las aguas de la riera junto con las aguas fecales de una amplia zona de aguas arriba del ferrocarril.

La profundidad a la que discurre el colector no permite disponer el soterramiento por encima de él y sin afectarle, si no se quiere interferir en superficie con el vial que discurre por el antiguo cauce.

Es por ello que se hace preciso rectificar la sección hidráulica y el perfil longitudinal de este colector, para aumentar su capacidad y permitir rebajar al máximo posible la rasante del ferrocarril, y conseguir con ello que la estructura no sobresalga excesivamente en superficie, logrando por tanto la continuidad del vial que existe en la actualidad, al que, sin embargo, también hay que rectificarle algo su perfil longitudinal, sobreelevándolo.

La rasante en la zona de la nueva estación subterránea, se prolonga pasada dicha estación, con objeto de alcanzar la profundidad suficiente para conseguir que, la riera Pahissa, el colector de EMSSA y el colector de fecales de Sant Just, crucen sobre la losa de cobertura.

Ello supone que, en el punto de cruce con dicha riera, el ferrocarril discurra a una profundidad mínima obligada, ascendiendo desde ahí hacia ambos lados. Por el lado Oeste, respetando la pendiente máxima en la estación, y por el Este, con una pendiente de (16,5 ‰) hacia la A-2, a la que debe cruzar aprovechando la obra de fábrica existente.

El trazado en planta, una vez superada la zona de la estación, se separa del trazado actual, y se dispone en paralelo a él, mediante una curva en planta de radio 1.000 m.

De esta forma toma la alineación recta que viene desde Sant Joan Despí, antes de la A-2. La ejecución de las vías provisionales hace necesario que éstas crucen sobre parte del túnel, que deberá ser construido en una fase anterior (P. K. 89+560). Entre los P. K. 89+280 y 89+470, las vías provisionales se acercan considerablemente a las fachadas de los edificios. Esto no permitirá, durante la ejecución de las obras, mantener el acceso a los aparcamientos situados en los mismos.

Asimismo, y con objeto de reducir al mínimo un corte temporal de las vías durante la fase final de las obras, se hace preciso un ripado de vías provisional entre el P. K. 90+000 y el cruce bajo la A-2 (90+300).

Ello permite construir sucesivamente las vías sin tener que recurrir a la vía única.

La longitud del túnel, es de 1360 m, entre el P.K. 88+480 y el P.K. 89+840.

Otro aspecto que hay que considerar es la necesidad de demoler el edificio actual de la estación, y construir uno provisional y otro definitivo.

Asociado al primero de ellos, también se hace necesaria la construcción de andenes para las vías provisionales, que se han dimensionado con 160 m de longitud y 3,0 m de anchura mínima.

Esta solución permite resolver con facilidad la continuidad (tanto para tráfico peatonal como de vehículos) de todas las calles que hay hoy a ambas márgenes de la vía, ya que la profundidad del soterramiento no da lugar a interferencias en la superficie.

Para el diseño se han adoptado parámetros que permitan la velocidad de explotación de V = 140 km/h de acuerdo con las Normas Técnicas de RENFE.

4.2. LISTADOS

• Planta: Listado de coordenadas puntos singulares

Estación	Longitud	Coord. X	Coord. Y	<u>Acimut</u>	Radio	Parám.	X Centro	Y Centro
88+100,000	0,000	419.909,557	4.582.706,140	172,8465	Infinito			
88+165,758	65,758	419.936,762	4.582.646,273	172,8465	Infinito	Ini	cio de proyect	to
88+295,758	130,000	419.992,656	4.582.528,921	169,4124	-1.205,00	395,790	421.061,224	4.583.085,866
88+548,475	252,717	420.132,020	4.582.318,660	156,0610	-1.205,00		421.061,224	4.583.085,866
88+678,475	130,000	420.218,329	4.582.221,468	152,6270	Infinito	395,790		
89+114,475	436,000	420.513,647	4.581.900,713	152,6270	Infinito			
89+253,475	139,000	420.605,383	4.581.796,324	157,0515	1.000,00	372,827	419.824,447	4.581.171,712
89+320,144	66,669	420.645,259	4.581.742,910	161,2957	1.000,00		419.824,447	4.581.171,712
89+459,144	139,000	420.719,270	4.581.625,288	165,7202	Infinito	372,827 Fi i	nal de proyect	0
90+519,129	1.059,985	421.262,851	4.580.715,294	165,7202	Infinito			

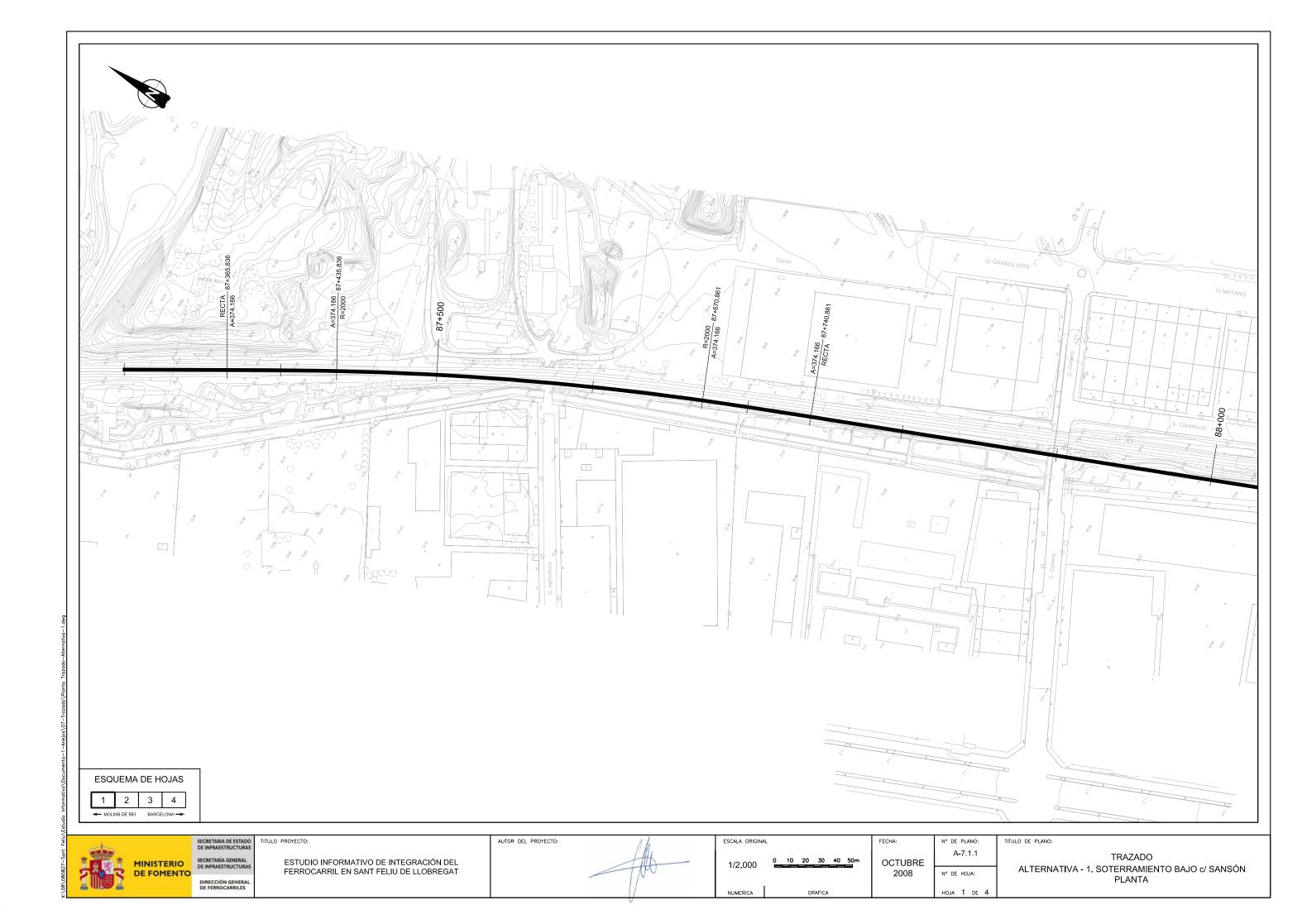
• Alzado: Listado de vértices y puntos singulares

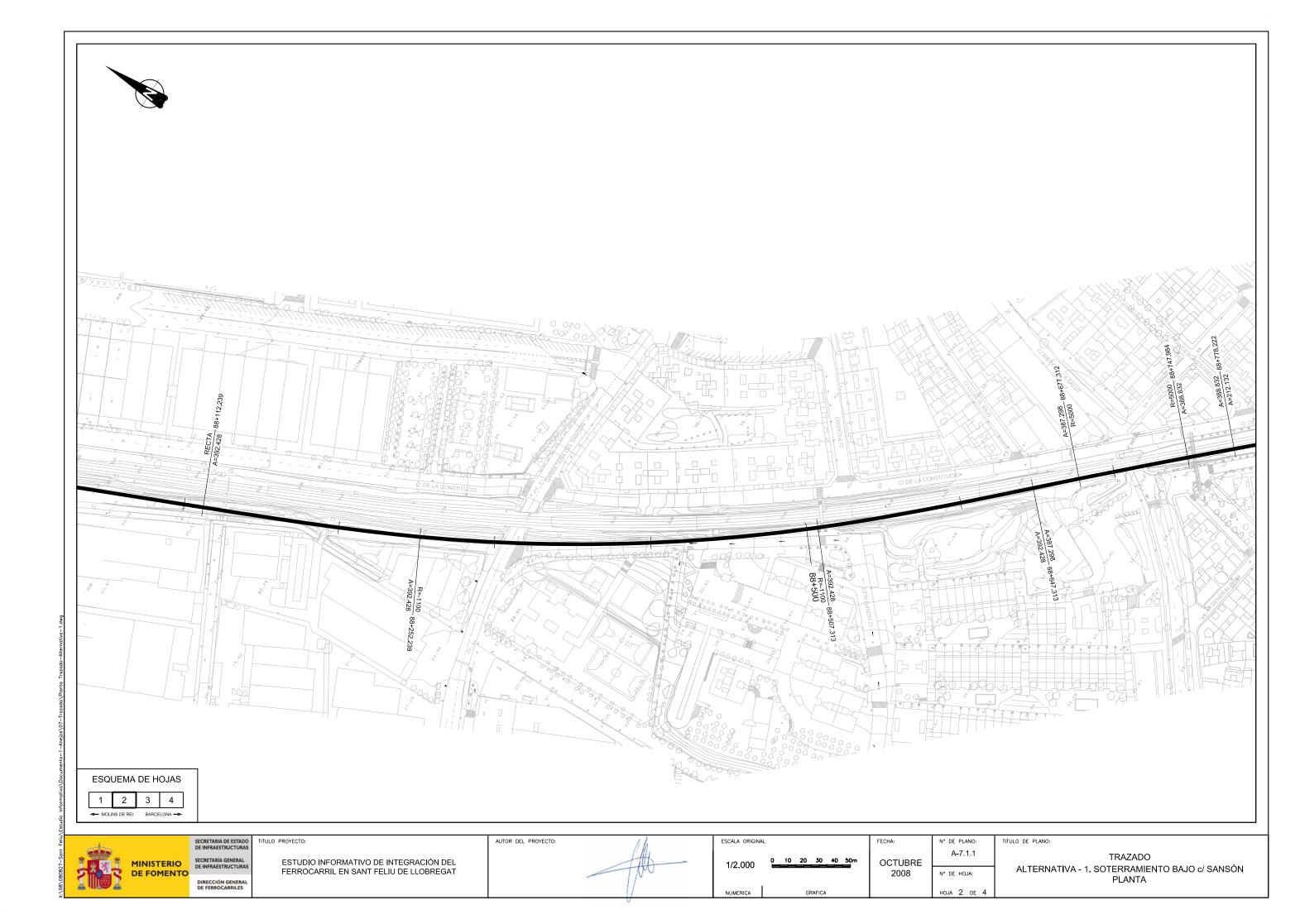
<u>Ver.</u>	Esta./Cota	TE/TS	Cota TE/TS	Pente.(%)E/S	<u>L/Flecha</u>	Kv/Theta(%)
1	87+920,000					
'	28,999	87+920,000	28,999	0,9994		
2	88+036,635	88+026,404	30,062	0,9994	20,462	-4.000,000
	30,165	88+046,866	30,215	0,4878	-0,013	-0,5116
3	88+180,000	88+176,754	30,848	0,4878	6,492	4.000,000
	30,864	88+183,245	30,885	0,6501	0,001	0,1623
4	88+380,734	88+320,706	31,779	0,6501	120,054	-4.900,000
	32,169	88+440,761	31,089	-1,8000	-0,368	-2,4501
5	88+958,687	88+900,567	22,812	-1,8000	116,240	7.500,000
	21,766	89+016,806	21,621	-0,2501	0,225	1,5499
6	89+557,632	89+507,278	20,394	-0,2501	100,706	5.300,000
	20,268	89+607,985	21,099	1,6500	0,239	1,9001
7	90+284,356	90+229,546	31,355	1,6500	109,618	-5.500,000
	32,259	90+339,165	32,071	-0,3431	-0,273	-1,9931
8	90+380,259	90+380,259	31,930	-0,3431		
	31,930					

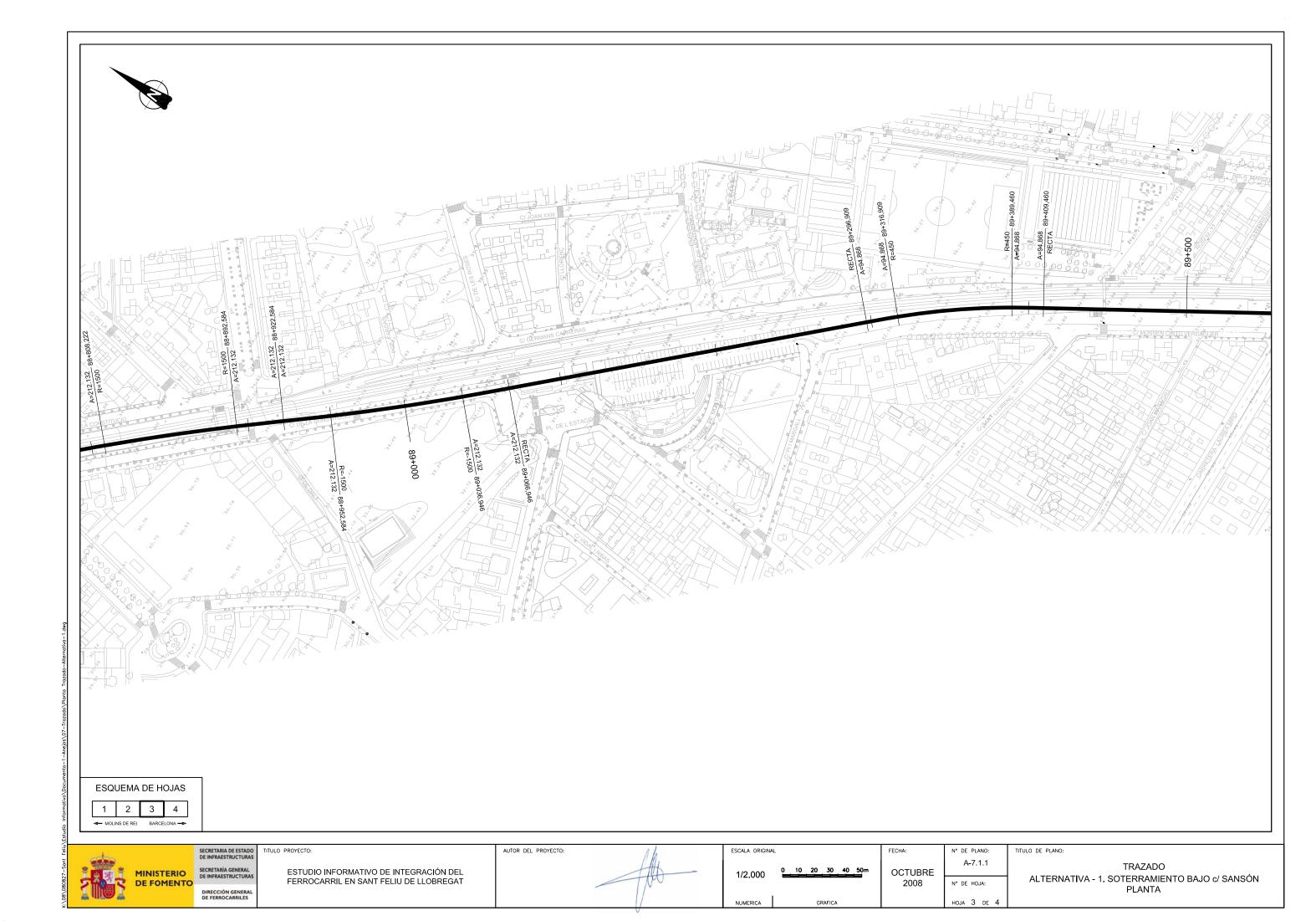
NO DE CUEDA	4
Nº DE CURVA	1
P. K. INICIO CURVA DE TRANSICIÓN	88+295,758
P. K. FINAL CURVA DE TRANSICIÓN	88+548,475

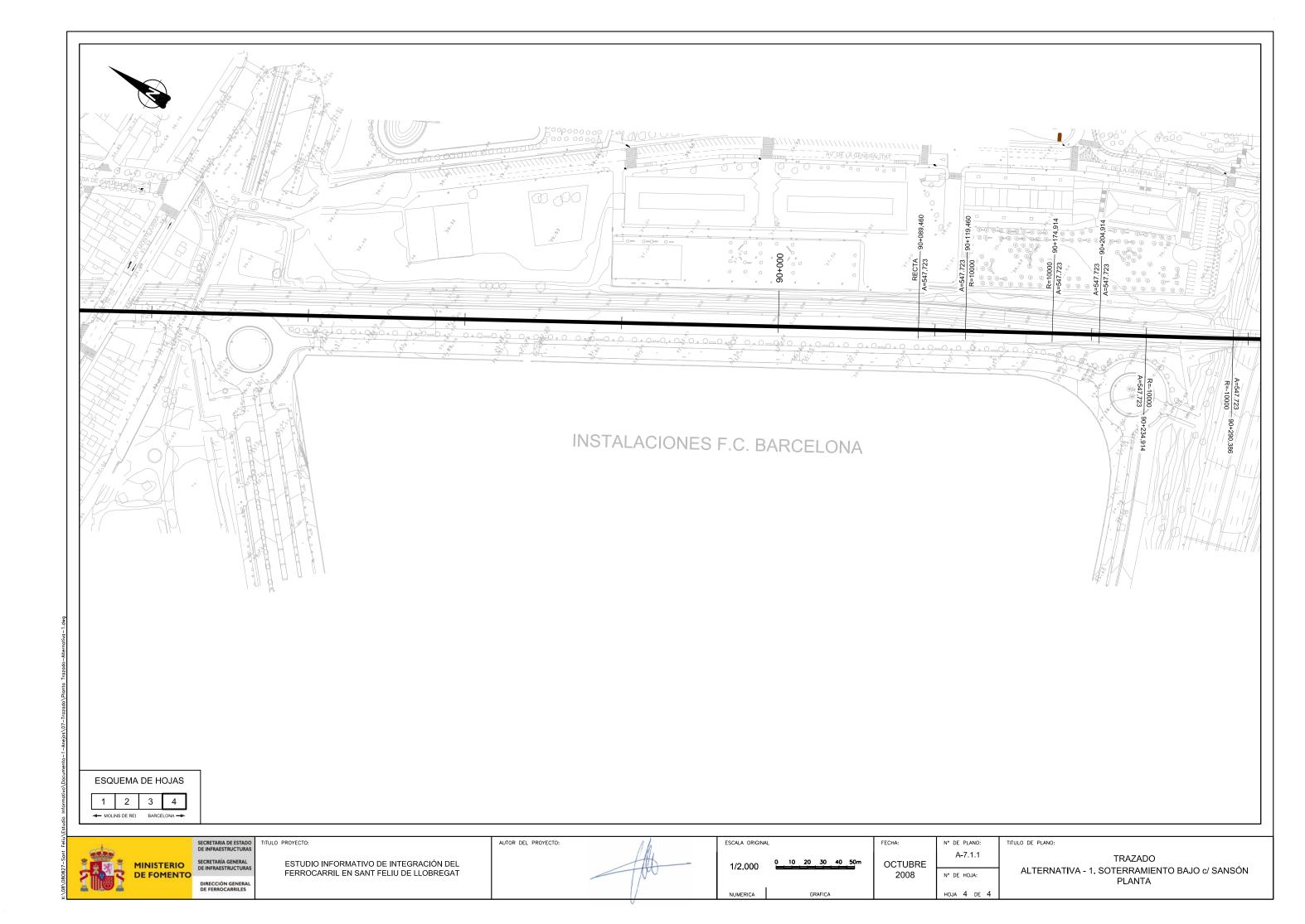
HIPÓTESIS DE PARTIDA

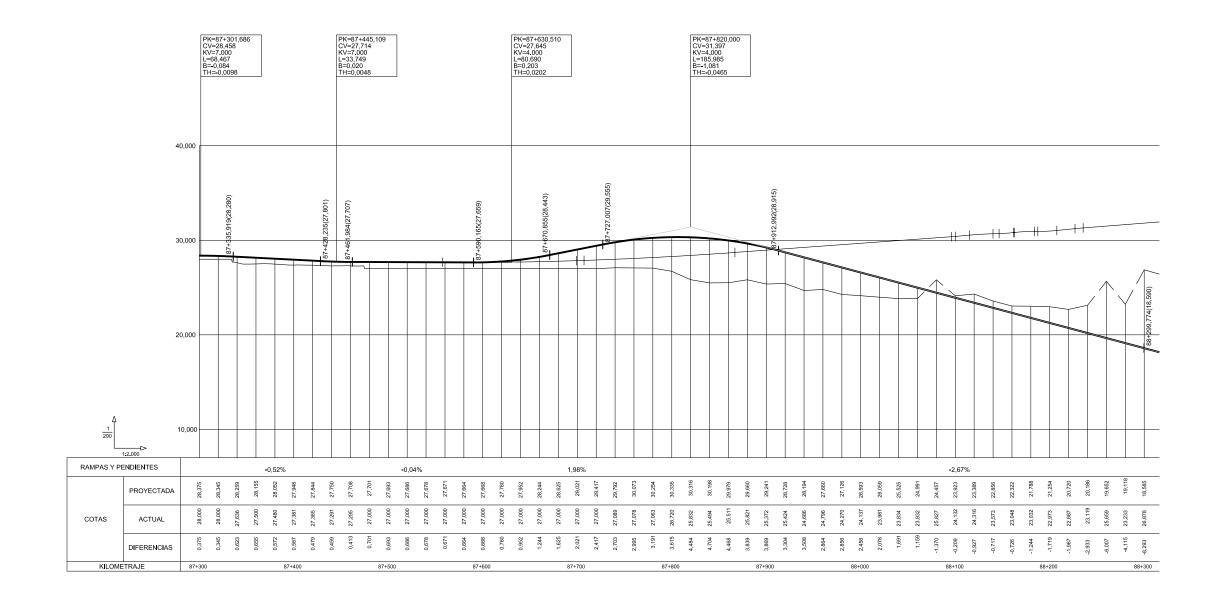
Radio	1205	m
Velocidad máxima	130	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	100	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m


Aceleración sin compensar negativa	0,52	m/s²
Aceleración sin compensar positiva	0,33	m/s²
Curva de transición	130	m
Parámetro de la curva de transición	396	
Exceso de peralte	59	mm
Insuficiencia de peralte	92	mm
Variación del peralte	30,09	mm/s
Variación de la insuf. de peralte	27,69	mm/s
Pendiente del diagrama de peraltes	0,83	mm/m
Máx. variación de la Asc	0,16	m/s²


Nº DE CURVA	2
P. K. INICIO CURVA DE TRANSICIÓN	89+253,475
P. K. FINAL CURVA DE TRANSICIÓN	89+320,475


Radio	1000	m
Velocidad máxima	120	km/h
Velocidad minima	45	km/h
Acel. sin compensar positiva máxima	0,65	m/s²
Acel.sin compensar negativa máxima	0,45	m/s²
Peralte máximo	160	mm
Peralte	100	mm
Max. Pend. Diagrama de peralte	1,5	mm/m
Max. Insuficiencia de peralte	115	mm
Max. Variación de peralte	45	mm/s
Max. Variación insuf. Peralte	35	mm/s
Max. Exceso de peralte	80	mm
Max. Variación de la Asc	0,20	m/s²
Tipo de carril	54	kg/m
Ancho de vía	1,668	m
Ancho camino de rodadura	1,740	m


Aceleración sin compensar negativa	0,43	m/s²
Aceleración sin compensar positiva	0,40	m/s²
Curva de transición	139	m
Parámetro de la curva de transición	374	
Exceso de peralte	71	mm
Insuficiencia de peralte	77	mm
Variación del peralte	28,57	mm/s
Variación de la insuf. de peralte	18,33	mm/s
Pendiente del diagrama de peraltes	0,86	mm/m
Máx. variación de la Asc	0,10	m/s²


APÉNDICE 1. PLANOS

ESQUEMA DE HOJAS 1 2 3

MINISTERIO DE FOMENTO

SECRETARÍA GENERAL DE INFRAESTRUCTURA:

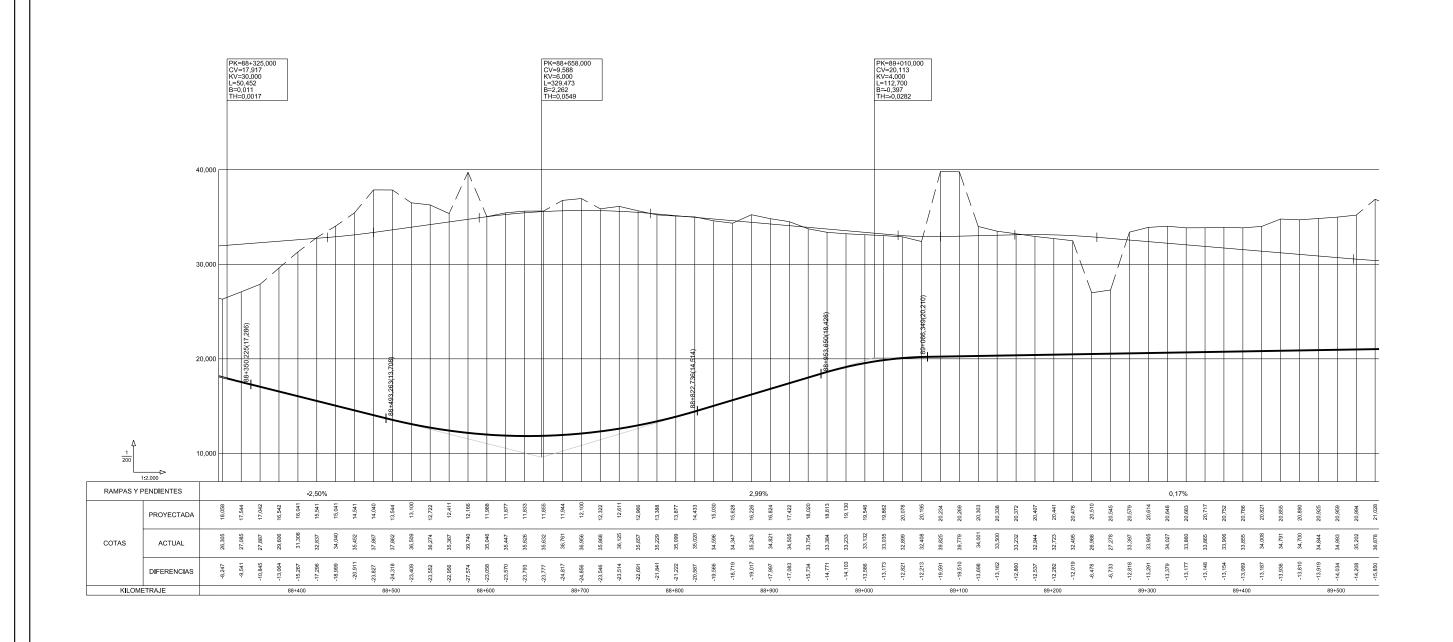
SECRETARIA DE ESTADO DE INFRAESTRUCTURAS DIRECCIÓN GENERAL DE FERROCARRILES

TITULO PROYECTO:

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

AUTOR DEL PROYECTO:

ESCALA ORIGINAL 1/2.000


NUMERICA

N° DE PLANO: A-7.1.2 OCTUBRE 2008 N° DE HOJA:

HOJA 1 DE 3

TITULO DE PLANO:

TRAZADO ALTERNATIVA - 1. SOTERRAMIENTO BAJO c/ SANSÓN PERFIL LONGITUDINAL

MINISTERIO DE FOMENTO

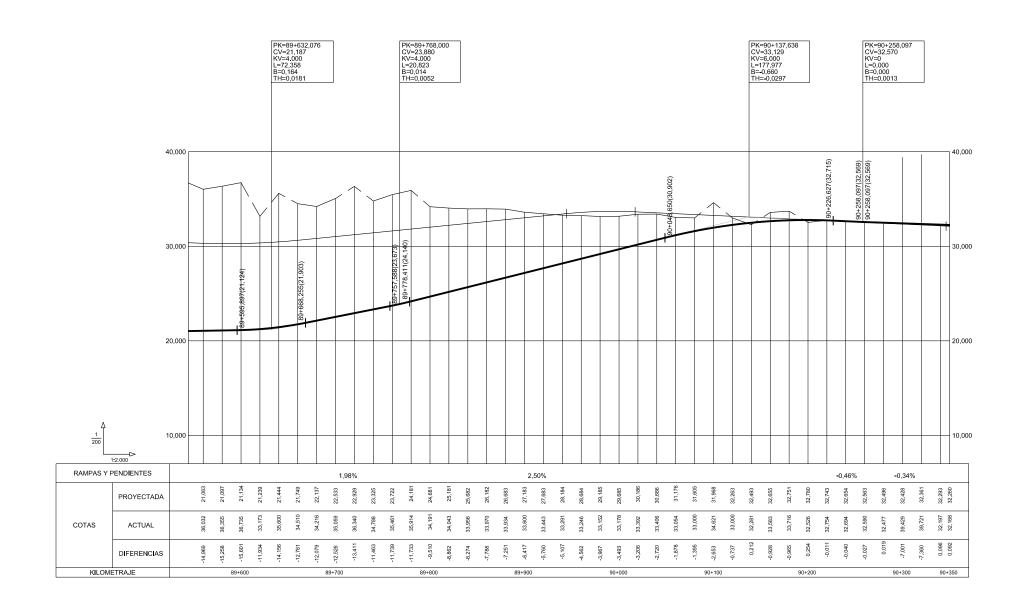
SECRETARÍA GENERAL DE INFRAESTRUCTURA:

SECRETARIA DE ESTADO DE INFRAESTRUCTURAS DIRECCIÓN GENERAL DE FERROCARRILES

TITULO PROYECTO:

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

AUTOR DEL PROYECTO:


ESCALA ORIGINAL 1/2.000 NUMERICA

N° DE PLANO: A-7.1.2 OCTUBRE 2008 N° DE HOJA:

HOJA 2 DE 3

TRAZADO ALTERNATIVA - 1. SOTERRAMIENTO BAJO c/ SANSÓN PERFIL LONGITUDINAL

TITULO DE PLANO:

ESQUEMA DE HOJAS

1 2 3 MOLINS DE REI

BARCELONA

→

SECRETARIA DE ESTADO DE INFRAESTRUCTURAS DIRECCIÓN GENERAL DE FERROCARRILES

TITULO PROYECTO:

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

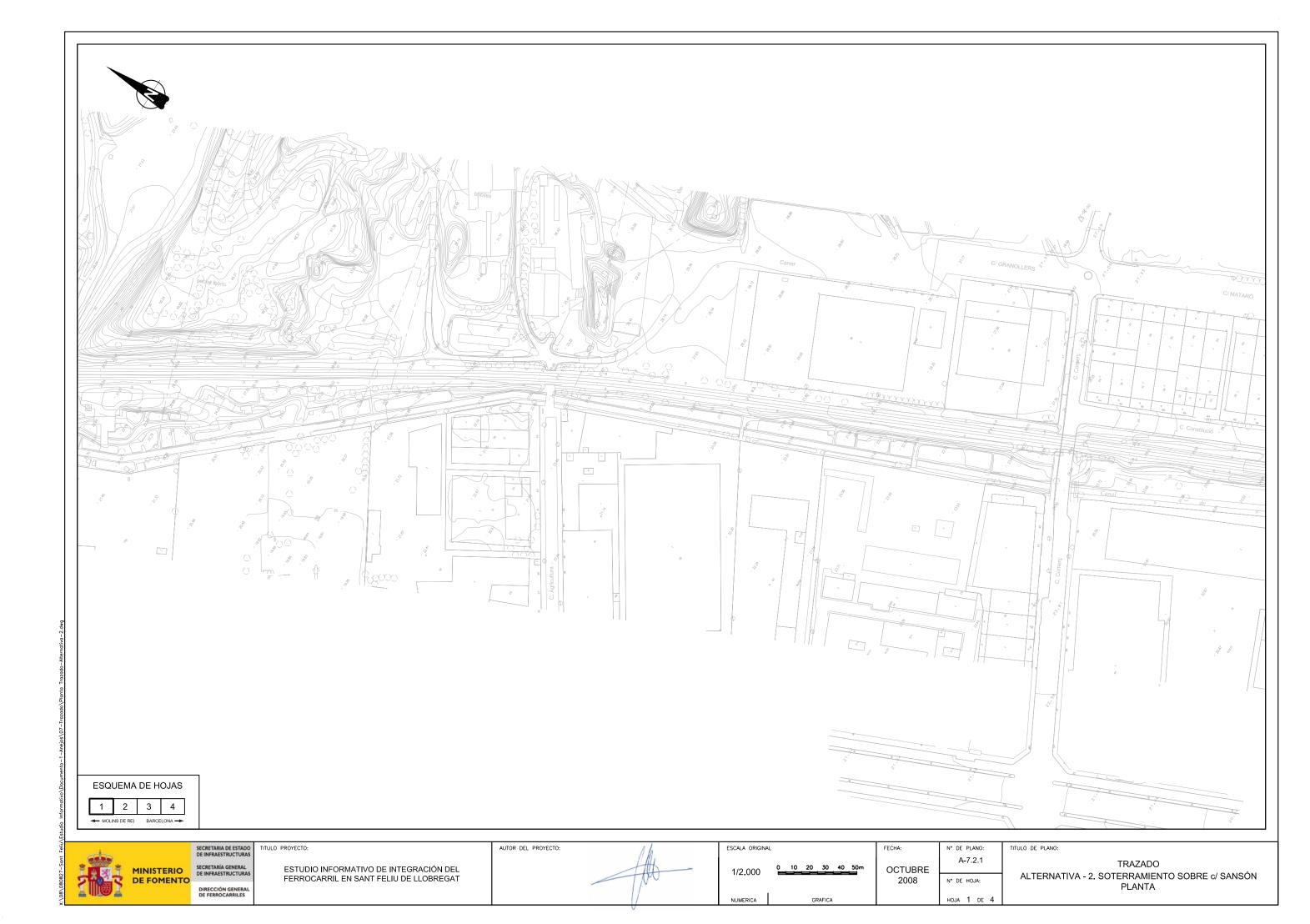
AUTOR DEL PROYECTO:

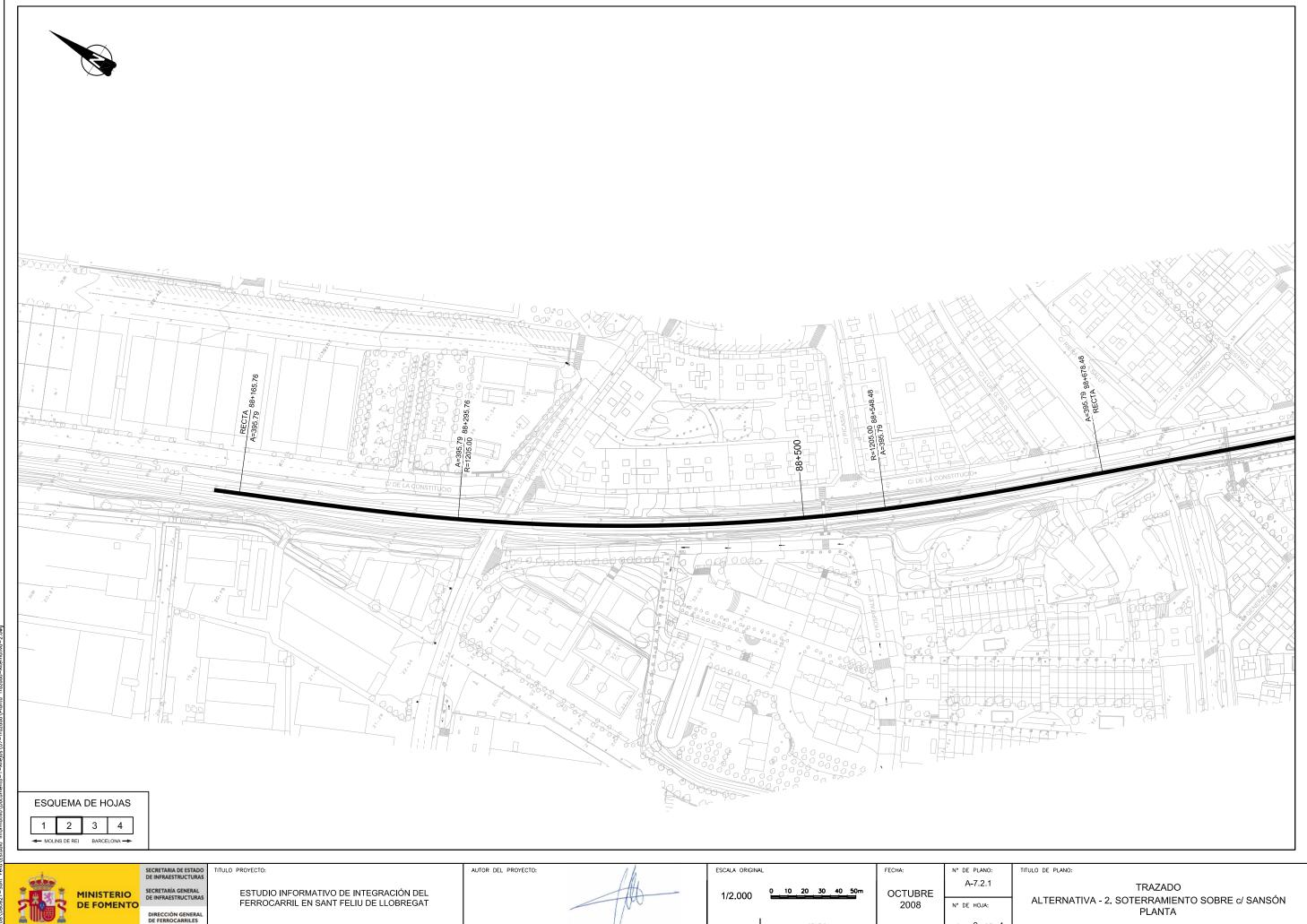
ESCALA ORIGINAL 1/2.000

GRAFICA

NUMERICA

A-7.1.2 OCTUBRE 2008 N° DE HOJA:

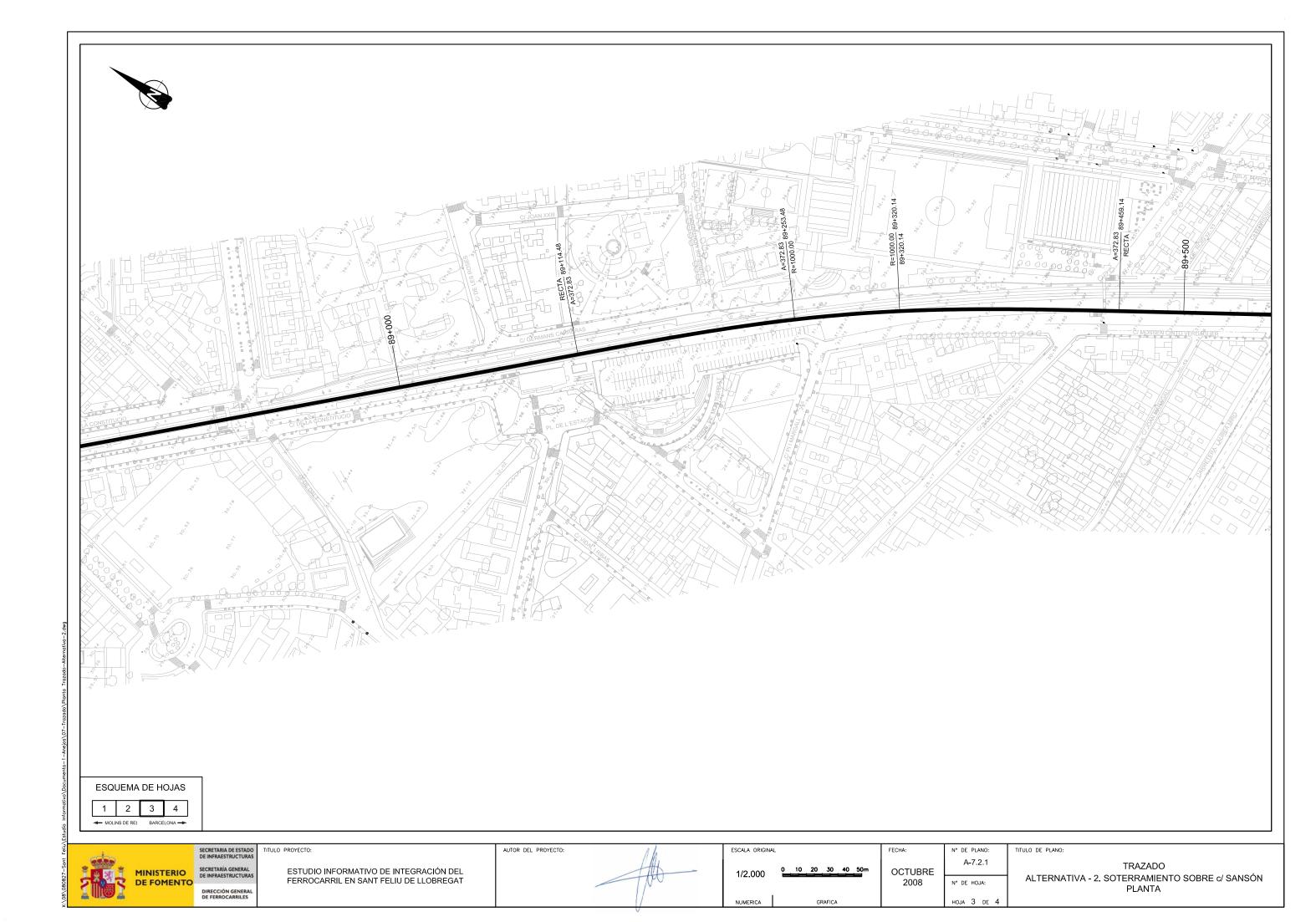

HOJA 3 DE 3


TITULO DE PLANO:

TRAZADO ALTERNATIVA - 1. SOTERRAMIENTO BAJO c/ SANSÓN

N° DE PLANO:

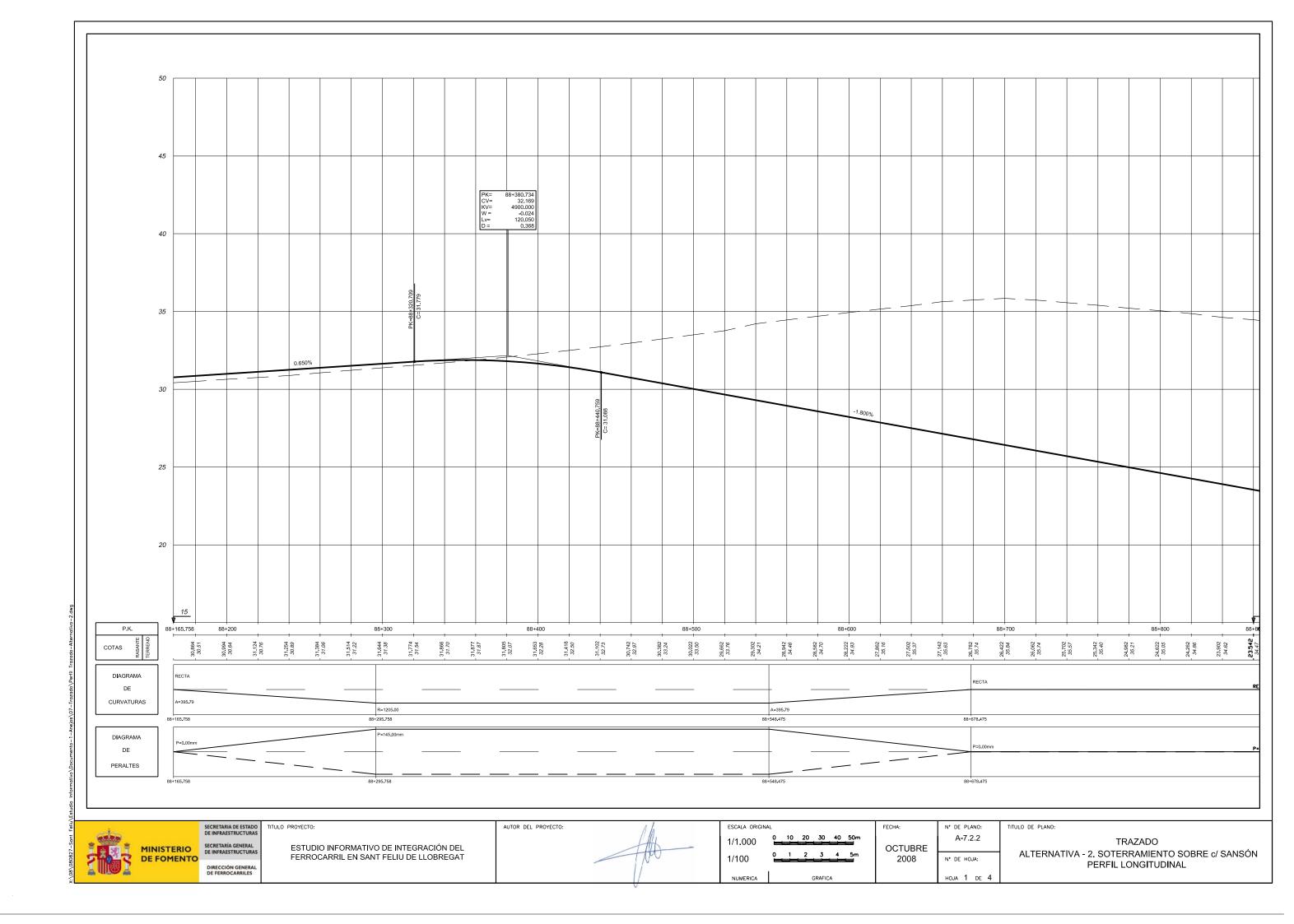
PERFIL LONGITUDINAL

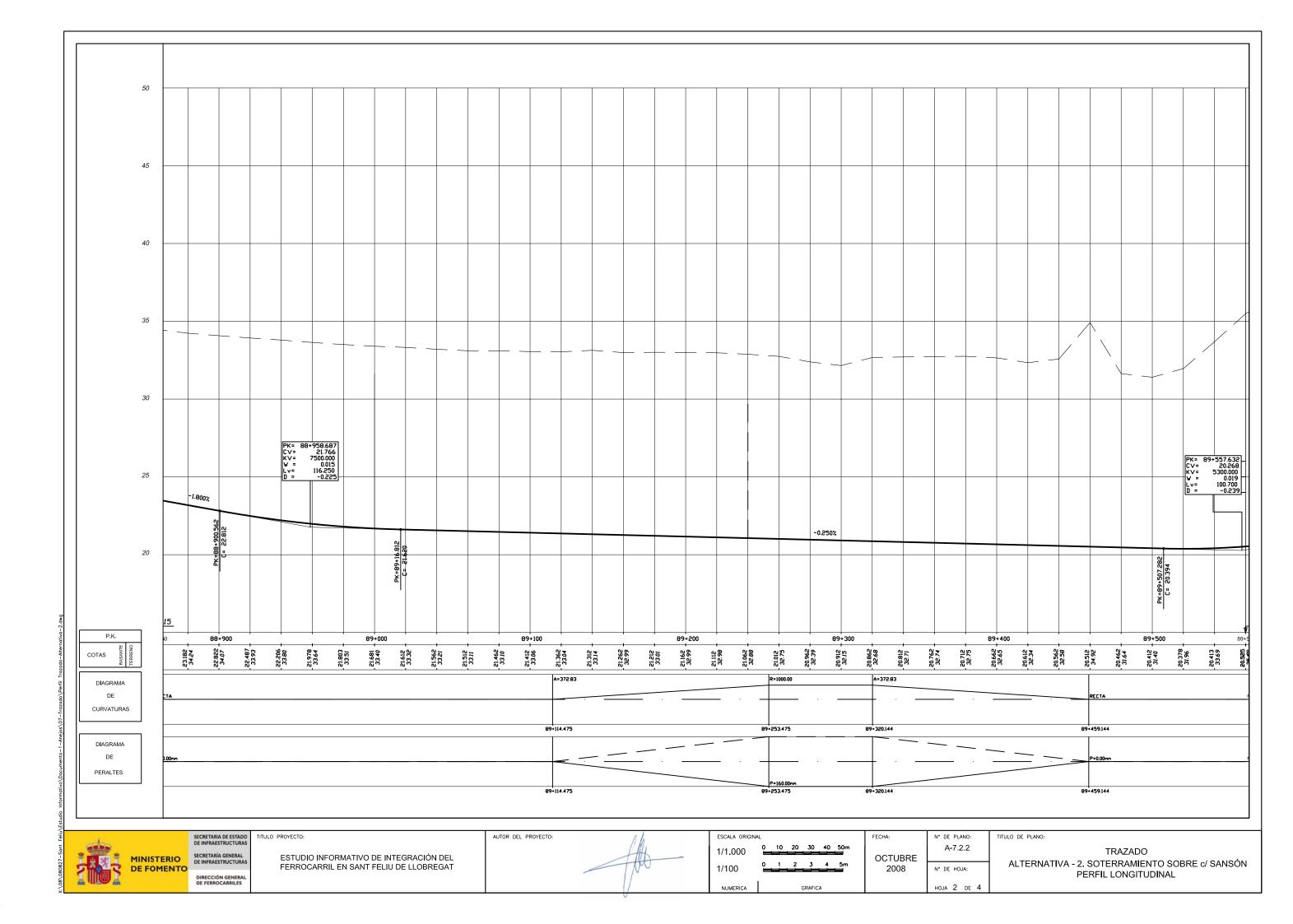


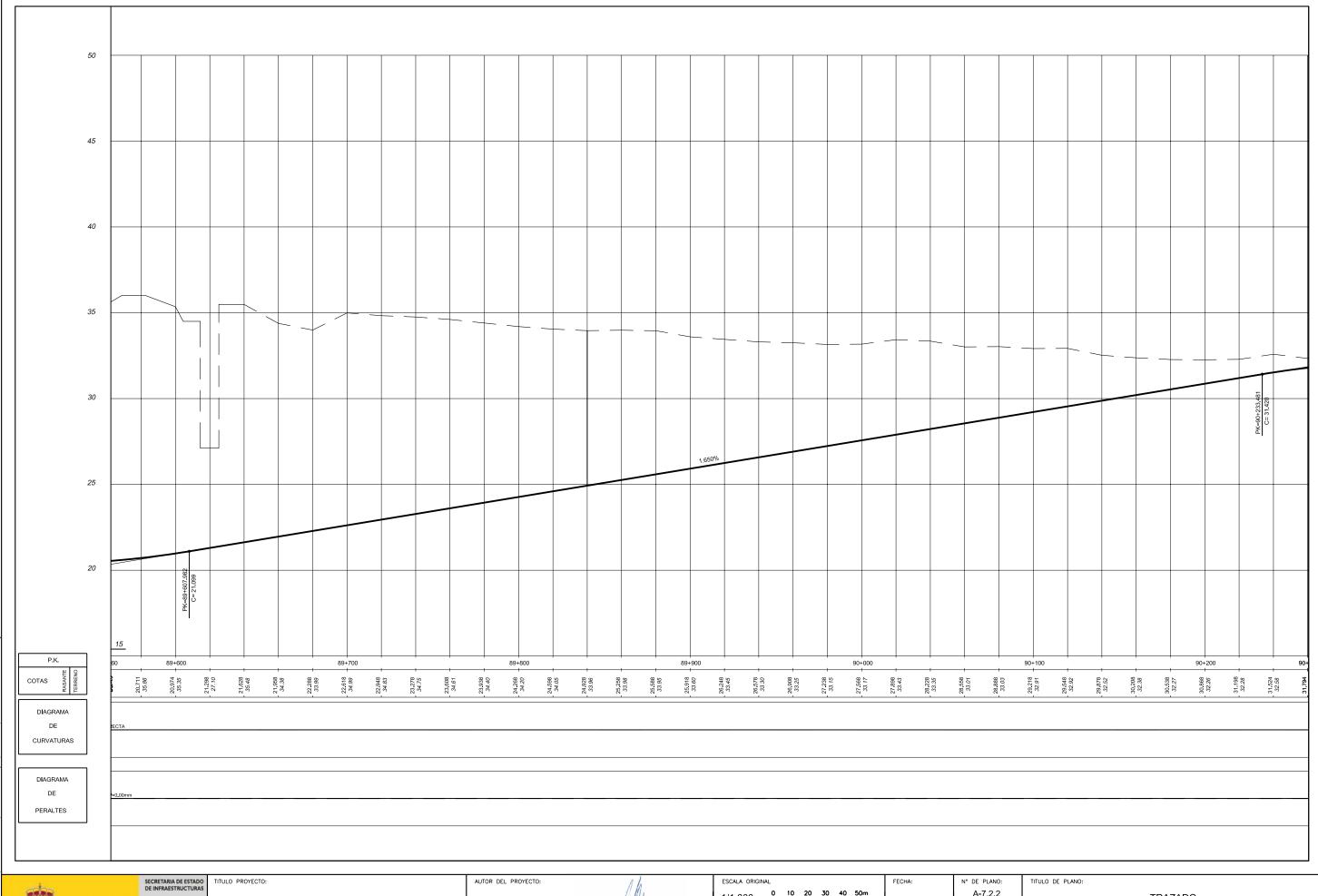


2008 N° DE HOJA: HOJA 2 DE 4

PLANTA




DIRECCIÓN GENERAL DE FERROCARRILES

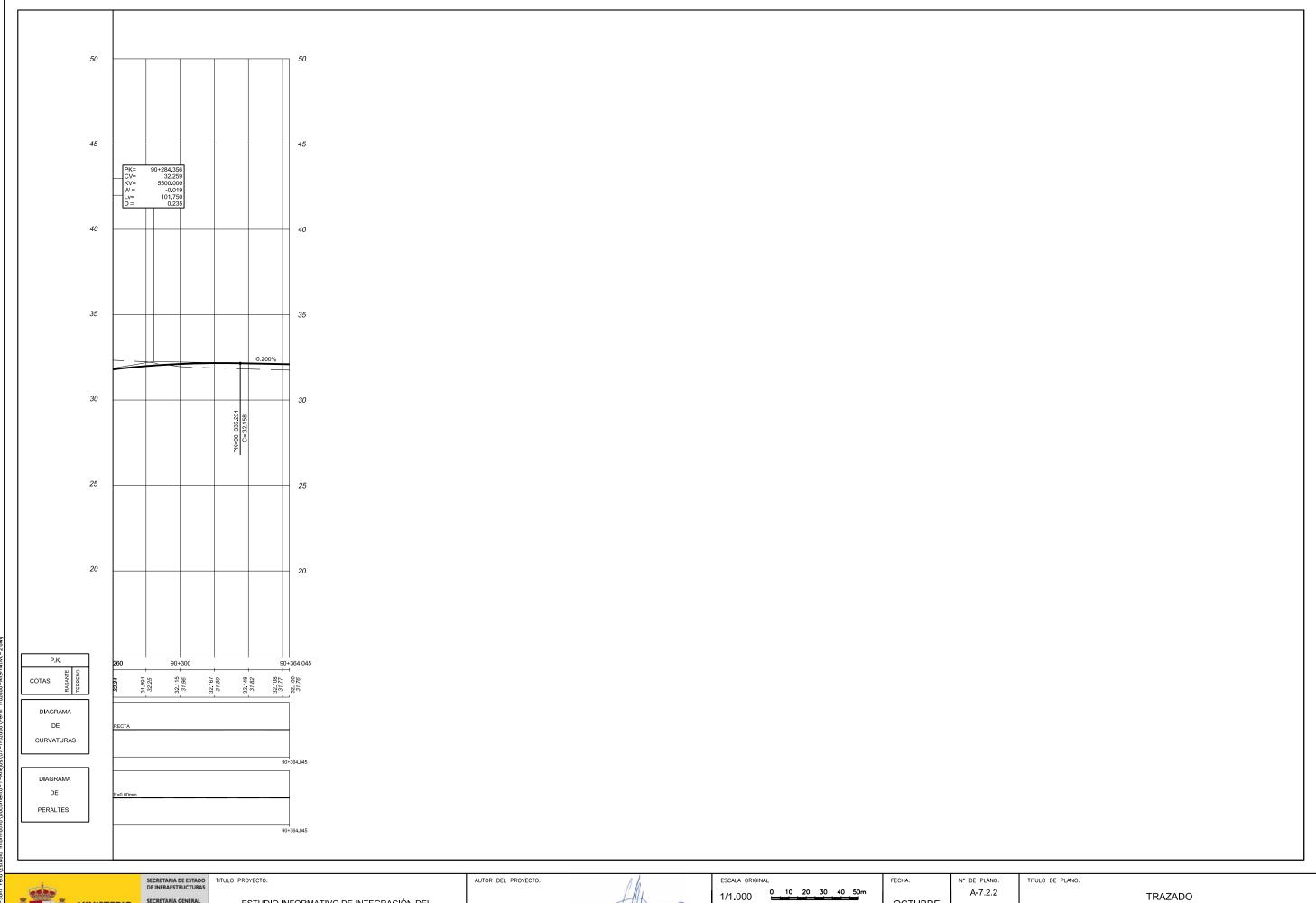

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

N° DE HOJA:

ALTERNATIVA - 2. SOTERRAMIENTO SOBRE c/ SANSÓN PLANTA

DIRECCIÓN GENERAL DE FERROCARRILES

10 20 30 40 50m 1/1.000 0 1 2 3 4 5m 1/100 GRAFICA NUMERICA


A-7.2.2 OCTUBRE 2008 N° DE HOJA:

ноја 3 де 4

TRAZADO ALTERNATIVA - 2. SOTERRAMIENTO SOBRE c/ SANSÓN

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

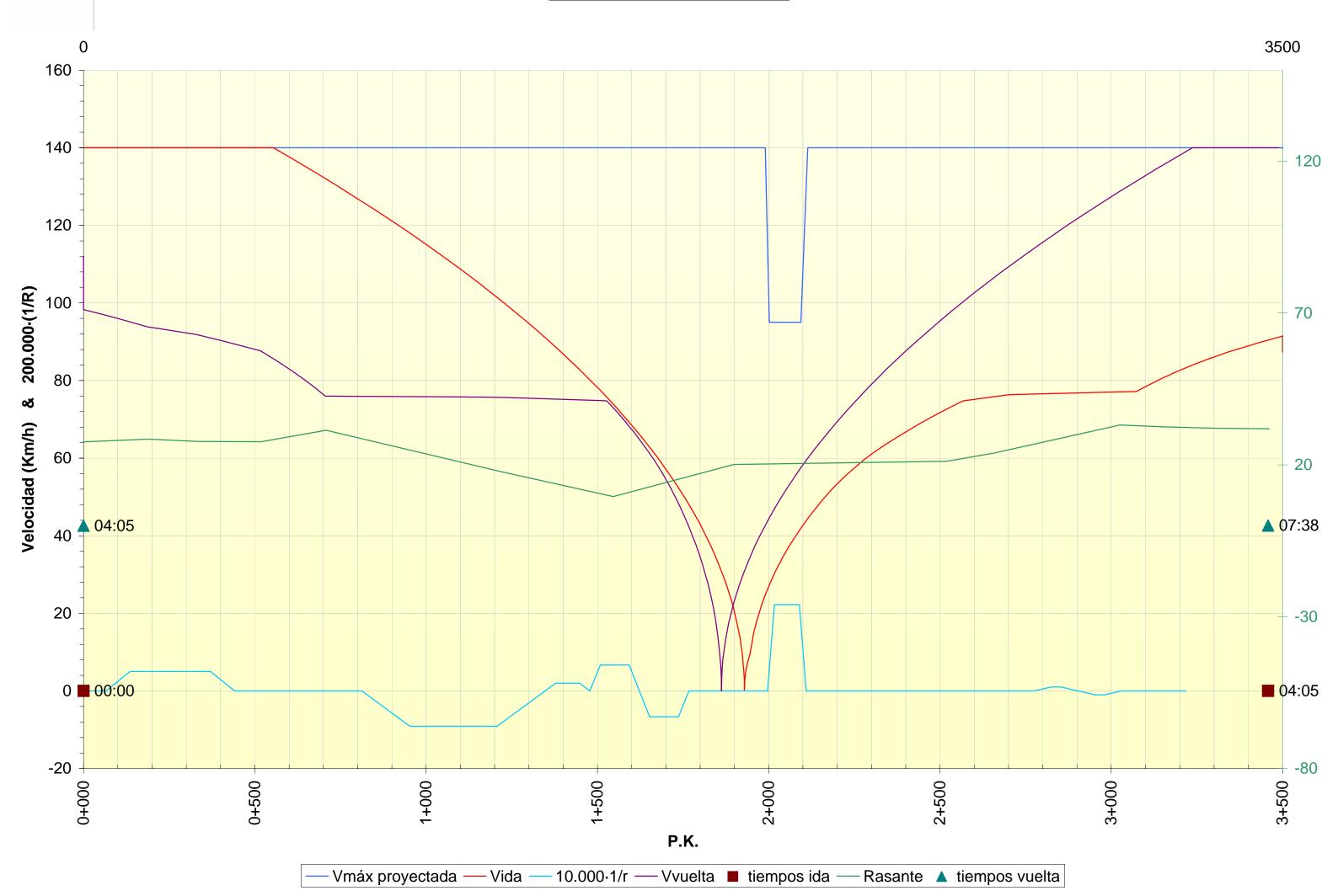
PERFIL LONGITUDINAL

DIRECCIÓN GENERAL DE FERROCARRILES

ESTUDIO INFORMATIVO DE INTEGRACIÓN DEL FERROCARRIL EN SANT FELIU DE LLOBREGAT

0 1 2 3 4 5m

1/100


OCTUBRE 2008 N° DE HOJA:

ALTERNATIVA - 2. SOTERRAMIENTO SOBRE c/ SANSÓN PERFIL LONGITUDINAL

A	07	Tuo-0-1-	
Aneio	nº /.	Trazado	Į

APÉNDICE 2. GRÁFICO ESPACIO/VELOCIDAD

GRAFICO MARCHAS TIPO

