


### **ÍNDICE**

| 1.   | CLIMAT | TOLOGÍA. ALTERNATIVAS 1 Y 2 1                        |
|------|--------|------------------------------------------------------|
| 1.1. | INTRO  | ODUCCIÓN 1                                           |
| 1.2. | TRAT   | AMIENTO DE LOS DATOS 1                               |
| 1.3. | DATC   | OS CLIMATOLÓGICOS GENERALES2                         |
|      | 1.3.1. | Estaciones seleccionadas. Criterios                  |
|      | 1.3.2. | Precipitación Mensual y Media Anual2                 |
|      | 1.3.3. | Precipitación Máxima Diaria                          |
|      | 1.3.4. | Diario Meteorológico3                                |
|      | 1.3.5. | Variables Termométricas4                             |
| 1.4. | CLAS   | IFICACIÓN CLIMÁTICA5                                 |
|      | 1.4.1. | Índices Climáticos5                                  |
|      | 1.4.2. | Climodiagramas6                                      |
|      | 1.4.3. | Clasificación Climática de Papadakis7                |
|      | 1.4.4. | Clasificación Climática de Thornthwaite 8            |
| 2.   | HIDROL | OGÍA. ALTERNATIVAS 1 Y 210                           |
| 2.1. | DATC   | OS PREVIOS10                                         |
| 2.2. | ESTU   | DIO DE PRECIPITACIONES10                             |
| 2.3. | CUR    | /AS DE INTENSIDAD-DURACIÓN11                         |
| 2.4. | PERÍO  | ODO DE RETORNO 13                                    |
| 2.5. | CÁLC   | CULO DE LOS TIEMPOS DE CONCENTRACIÓN 13              |
| 2.6. | ESTIN  | MACIÓN DEL UMBRAL DE ESCORRENTÍA 13                  |
| 2.7. | CÁLC   | CULO DE LOS COEFICIENTES DE ESCORRENTÍA14            |
| 2.8. | CÁLC   | CULO DE CAUDALES 14                                  |
| 3.   | DRENA  | JE16                                                 |
| 3.1. | DREN   | NAJE LONGITUDINAL. ALTERNATIVAS 1 Y 2                |
| 3.2. | POZC   | OS DE BOMBEO. ALTERNATIVA 118                        |
| 3.3. | POZC   | OS DE BOMBEO. ALTERNATIVA 218                        |
| 3.4. | DREN   | NAJE TRANSVERSAL. CARACTERÍSTICAS GENERALES COMUNES. |
|      |        |                                                      |

| 3.5. | DRENAJE TRANSVERSAL. ALTERNATIVA 12       | 1 |
|------|-------------------------------------------|---|
| 3.6. | DRENAJE TRANSVERSAL. ALTERNATIVA 22       | 1 |
| 3.7. | ANÁLISIS DE RIESGOS2                      | 1 |
|      |                                           |   |
| APÉN | IDICE 1. DATOS CLIMATOLÓGICOS.            |   |
| APÉN | IDICE 2. GRÁFICOS CLIMATOLÓGICOS.         |   |
| ΔPÉN | IDICE 3. HOJAS DE CÁLCULO DE PLUVIOMETRÍA |   |

### 1. CLIMATOLOGÍA. ALTERNATIVAS 1 Y 2

### 1.1. INTRODUCCIÓN

Los cálculos incluidos en los apartados de Climatología son comunes, y válidos para las dos alternativas analizadas en este estudio informativo: "Alternativa 1 bajo la calle Sansón" y "Alternativa 2 sobre la calle Sansón".

El objeto de este apartado es definir las características climatológicas de la zona de Sant Feliu de Llobregat, capital de la comarca del Baix Llobregat de la Provincia de Barcelona. Para ello, se realiza un análisis detallado de los datos climatológicos existentes, obteniendo los valores característicos para los parámetros más comunes.

Finalmente, se realiza una clasificación climática de la zona del proyecto.

El núcleo urbano de Sant Feliu de Llobregat está enclavado entre la sierra de Collserola y la plana del río Llobregat, a su paso por el Bajo Llobregat. Esta situación hace que el núcleo esté atravesado por una serie de rieras, canalizadas en la parte urbana.

La topografía de grandes pendientes de las cuencas de esta zona hace que los caudales de drenaje en épocas de lluvia sean muy importantes, convirtiendo estas rieras en ejes fundamentales de drenaje. Dado que el río Llobregat, en esta zona, discurre paralelo a la traza del ferrocarril, esta última corta perpendicularmente a todas las rieras. Estos cruces se resuelven mediante estructuras bajo el mismo.

El núcleo central de Sant Feliu, objeto de estudio, está situado entre dos de estas rieras: hacia el lado de Molins de Rei por la riera de La Salud y, al otro lado, por la riera Pahissa ó de Sant Just. A estas rieras son conducidas parte de las aguas procedentes de la red interior del saneamiento de Sant Feliu.

Por otra parte, el soterramiento previsto para la infraestructura del FF.CC. afecta a varios cruces de colectores bajo la vía del ferrocarril situados en las calles Passeig Comte de Vilardaga, Montserrat y Terrisser. Además, se estudia el drenaje existente en la urbanización Torreblanca.

En este anejo se estudia la Climatología de la zona de Proyecto, así como la hidrología de las cuencas y cauces correspondientes, para realizar el estudio de drenaje. En particular, se estudian las rieras de La Salud y Pahissa, el drenaje de la intercuenca delimitada entre ellas, y la cuenca vertiente a la Urbanización Torreblanca.

### 1.2. TRATAMIENTO DE LOS DATOS

En el estudio climático, se han recogido todos los datos disponibles de las estaciones climatológicas procedentes de la Agencia Estatal de Meteorología del Ministerio de Medio Ambiente. Como principal criterio, se han tomado las estaciones situadas a menos de 10 Km de distancia desde la zona de proyecto, eliminando posteriormente las estaciones con datos no significativos (estaciones con menos de 15 años de datos completos).

Para el presente estudio, se han recopilado datos de once (11) estaciones situadas en las proximidades de la zona de estudio. Estas estaciones son:

| Estación                                        | Período<br>disponible | Años<br>completos |
|-------------------------------------------------|-----------------------|-------------------|
| 0197 Sant Feliu de Llobregat                    | 1952-1964             | 7                 |
| 0197 A Sant Feliu de Llobregat                  | 1912-1924             | 5                 |
| 0197 B Sant Feliu de Llobregat                  | 1927-1946             | 8                 |
| 0197 C Sant Feliu de Llobregat                  | 1953-1958             | 5                 |
| 0197 D Sant Feliu de Llobregat                  | 1959-1964             | 0                 |
| 0198 Sant Boi de Llobregat                      | 1932-1992             | 27                |
| 0198 I Esplugues de Llobregat                   | 1979-1998             | 6*                |
| 0198 J Esplugues de Llobregat                   | 1912-1927             | 5*                |
| 0199 L' Hospitalet de Llobregat                 | 1957-1987             | 22                |
| 0199A L' Hospitalet de Llobregat "Ayuntamiento" | 1977-1995             | 6                 |
| 0200 Cornellá de Llobregat                      | 1918-1996             | 43                |

<sup>\*</sup> Existen datos para 25 años, de los cuales sólo 6 son completos. En el resto de años se dispone del 90% de datos aproximadamente. Aún así, se considera conveniente el empleo de esta estación por ser la más próxima a la cuenca de estudio y por tanto, ser altamente representativa del comportamiento pluviométrico.

Los datos climatológicos de las estaciones seleccionadas para este estudio se incluyen en el Apéndice 1.

Con los datos obtenidos, se han elaborado tablas y gráficos que definen claramente los diferentes parámetros climatológicos de la zona, estableciéndose la correspondiente clasificación climática.

### 1.3. DATOS CLIMATOLÓGICOS GENERALES

En este apartado, se analizan las principales variables climatológicas disponibles para obtener las clasificaciones climáticas de la zona de proyecto.

Los datos disponibles proceden de la Agencia Estatal de Meteorología del Ministerio de Medio Ambiente:

- Precipitación total mensual y anual
- Precipitación máxima en 24 horas en cada mes
- Número de días de lluvia mensual
- Viento dominante mensual
- Número de días de lluvia mensual
- Número de días de nieve mensual
- Número de días de rocío mensual
- Número de días de niebla mensual
- Número de días con precipitación ≥ 10 mm mensual
- Temperatura media mensual
- Temperatura mínima mensual
- Temperatura máxima mensual
- Temperatura media mensual de las máximas
- Temperatura media mensual de las mínimas
- Número de días al mes con temperatura mínima ≤ -5º C
- Número de días al mes con temperatura mínima ≤ 0° C
- Número de días al mes con temperatura mínima ≥ 30° C

### 1.3.1. Estaciones seleccionadas. Criterios.

Los criterios considerados para seleccionar las estaciones pluviométricas y termométricas consideradas en este estudio han sido los siguientes:

- Proximidad menor o igual a 10 Km de la zona de proyecto.
- Disponibilidad de una cantidad de datos significativos: menos de 15 años completos.

A continuación se muestran las estaciones meteorológicas de las que se han extraído los datos de precipitación y temperatura:

| Estación                                         | Precipitación | Temperatura |
|--------------------------------------------------|---------------|-------------|
| 0198 Sant Boi de Llobregat                       | X             | X           |
| 0198 I Esplugues de Llobregat                    | X             |             |
| 0198 J Esplugues de Llobregat                    | Х             |             |
| 0199 L' Hospitalet de Llobregat                  | X             |             |
| 0199 A L' Hospitalet de Llobregat "Ayuntamiento" | X             |             |
| 0200 Cornellá de Llobregat                       | X             |             |

### 1.3.2. Precipitación Mensual y Media Anual

El intervalo de tiempo disponible para las series de precipitaciones va desde los 33 años de las estaciones de Sant Boi de Llobregat (nº 0198) y 25 de L'Hospitalet del Llobregat (nº 0199), hasta los 47 años en la estación de Cornellá de Llobregat (nº 0200).

Para el estudio se han considerado algunas estaciones con historiales de datos pequeños, pero con una proximidad significativa a la zona de estudio.

En los gráficos adjunto s se reflejan las precipitaciones medias mensuales y anuales para las estaciones consideradas, oscilando la precipitación media anual entre 569,4 mm y 695,9 mm, con un valor medio de 612,1 mm.

Para los valores mensuales, el rango está entre 13,9 mm y 99,0 mm, con un promedio de 51,0 mm.

### 1.3.3. Precipitación Máxima Diaria

En el Apéndice 1, se incluyen las matrices de precipitaciones máximas en 24 horas para cada mes, a lo largo de la serie de años analizada en cada una de las estaciones.

En los gráficos adjuntos se presentan los valores medios mensuales de la precipitación máxima diaria, oscilando entre 18,9 y 230,0 mm, con un promedio de 115,9 mm.

### 1.3.4. Diario Meteorológico

Bajo esta denominación del diario meteorológico, se incluyen las recopilaciones y análisis de las siguientes variables:

- Número de días de lluvia
- Número de días de nieve
- Número de días de granizo
- Número de días de tormenta
- Número de días de niebla
- Número de días de precipitación ≥ 10 mm

Todas las series se han tomado de los archivos digitales facilitados por la A.E.M. En el Apéndice 1 se presentan todos los datos disponibles en las estaciones consideradas en los años completos.

A continuación se realiza un análisis de los datos de los diferentes fenómenos mencionados.

### NÚMERO DE DÍAS DE LLUVIA

En el gráfico adjunto se refleja el número medio mensual de días de lluvia, así como el total anual, en las estaciones analizadas.

Los valores medios totales deducidos por los días de lluvia oscilan entre 5,1 días de la estación de Cornellá de Llobregat hasta los 93,2 días de L'Hospitalet de Llobregat. A nivel mensual, oscilan entre los 0,1 días de lluvia en Cornellá y los 9,5 días de mayo en Esplugues.

Considerando el conjunto de las seis estaciones, el valor medio anual es de 61,6 días de lluvia, con mínimos en el mes de julio (3,2 días) y máximos en el mes de octubre (6,6 días).

### NÚMERO DE DÍAS DE NIEVE

El intervalo de tiempo disponible para conocer el número de días de nieve registrada en los observatorios de la zona es el mismo que el existente para la lluvia. La estación con más días de nieve en el año es Esplugues de Llobregat "Finestrelles" con 1,4 días; y la que tiene menos Cornellá de Llobregat, cuya media resulta nula.

De los registros de nieve en la zona, podemos deducir que comienza a nevar en Diciembre, llegando los valores máximos en el mes de enero y febrero. El resto de meses presenta una ausencia de nieve prácticamente total.

Los gráficos adjuntos muestran los valores medios anuales de cada estación y el total anual de días de nieve registrados.

### NÚMERO DE DÍAS DE GRANIZO

La frecuencia de este fenómeno meteorológico es menor que el de nieve.

Los valores medios anuales máximos son de 0,13 días en Esplugues y L'Hospitalet; y medios anuales nulos en Cornellá y Sant Boi de Llobregat.

### NÚMERO DE DÍAS DE TORMENTA

La gráfica adjunta presenta los valores medios de días de tormenta para las seis estaciones próximas a la zona de proyecto.

El número de días de tormenta al año registrados oscila entre 0 días en Cornellá y los 17,0 días en L'Hospitalet de Llobregat "Ayuntamiento", con una media de 6,6 días de tormenta anuales.

### NÚMERO DE DÍAS DE NIEBLA

La gráfica adjunta presenta los valores medios de días de niebla para las seis estaciones próximas a la zona de proyecto.

El número de días de niebla al año registrados oscila entre 0 días en Cornellá y los 19,6 días en Esplugues de Llobregat "Finestrelles", con una media de 8,1 días de niebla anuales.

### NÚMERO DE DÍAS DE PRECIPITACIÓN ≥ 10 MM

En la gráfica adjunta se reflejan los días de precipitación >= 10 mm, los valores medios mensuales y total anual para las seis estaciones analizadas.

El número medio anual de días de lluvia superior a 10 mm oscila entre los 16,2 en Esplugues de Llobregat "Finestrelles" y los 21,0 días en Cornellá de Llobregat, con un valor medio anual de 18,2 días, que como puede apreciarse son muy similares entre las estaciones analizadas.

Los meses con más días de lluvia son septiembre y octubre. Se observa que, a nivel medio, el número de días con precipitaciones superiores a 10 mm es el 29,6 % del número de días de lluvia registrados.

### 1.3.5. Variables Termométricas

Para la determinación de las diferentes variables termométricas analizadas, sólo se dispone de una estación con una cantidad de años completo significativa: Sant Boi de Llobregat.

Las variables analizadas son: Temperaturas media, máxima, máxima media, mínima, mínima media del mes y días de temperatura máxima mayor de 30°C, días de mínima menor de -5°C y menor 0°C.

### TEMPERATURA MEDIA MENSUAL

La temperatura media mensual tiene valores mínimos de diciembre a febrero con 9,3°C en enero; los valores medios mensuales máximos se dan en julio con 23,7°C.

La temperatura media anual es de 16°C para la estación de Sant Boi de Llobregat.

### TEMPERATURAS MÁXIMAS Y MÍNIMAS ABSOLUTAS

La temperatura máxima registrada es de 38,0°C en julio, y a nivel de valores medios, la mayor temperatura sigue siendo en julio, con 32,1°C. En cuanto a temperatura mínima, el valor absoluto menos se da en noviembre (-7,0°C), y el valor medio más bajo en enero (0,3°C).

### OSCILACIÓN VERANO-INVIERNO

Contrastando los valores de temperaturas medias de las máximas y mínimas diarias mes a mes, se llega a un valor máximo de oscilación de 9,4°C en febrero, y un valor mínimo en agosto, con 8,0°C de diferencia entre el valor medio máximo y mínimo. La variación media de dicha oscilación es de 8,7°C.

Si consideramos la media de los valores absolutos de temperatura máxima y mínima, la oscilación máxima se da en marzo, con 19,2°C, mientras que la mínima se produce en agosto con 15,8°C. La variación media de dicha oscilación es de 18,1°C.

### **OTRAS VARIABLES**

Finalmente, se analizan las siguientes variables: días de temperatura máxima mayor de 30°C, días de mínima menor de -5°C y menor 0°C.

A continuación, es presenta una tabla con los valores máximos de los parámetros en términos absolutos y medios.

| PARÁMETRO          | Media  | Mín/Máx.Mensual |
|--------------------|--------|-----------------|
| FARAMETRO          | (días) | (días)          |
| Días con T < 0°C   | 5,8    | 2,4             |
| Días con T < -5°C  | 0,0    | 0,0             |
| Días con T >= 30°C | 24,6   | 10,8            |

Para el estudio climático, el conocimiento de los días con temperatura inferior a 0°C es importante, para determinar la posibilidad de helada. La estación de Sant Boi de Llobregat presenta medias mensuales distintas de cero de noviembre a marzo.

### 1.4. CLASIFICACIÓN CLIMÁTICA

### 1.4.1. Índices Climáticos

ÍNDICE DE ARIDEZ DE MARTONNE

Se define con la expresión siguiente:

$$I = \frac{P}{t+10}$$

Donde,

P = Precipitación media anual en mm

t = Temperatura media anual en °C

Cuando se calcula el índice de aridez para un mes en particular, se utiliza la expresión:

$$I = \frac{p}{t+10}$$

Donde **p** y **t** son la precipitación y la temperatura medias del mes considerado.

La expresión numérica anual se calcula como la media aritmética entre el índice anual, según la fórmula anterior y el índice mensual ya comentado.

Pmedia anual: 603,3 mm Tmedia anual: 16,1 °C

Índice de aridez Martonne: 23,1

ÍNDICE PLUVIOMÉTRICO DE DANTIN -REVENGA

Se define con la expresión siguiente:

$$I = \frac{100 \cdot t}{P}$$

Donde,

: = Temperatura media anual en °C

P = Precipitación media anual en mm

Una vez calculado el índice, la aridez se expresa según el siguiente cuadro:

| Índice Termo pluviométrico | Designación       |
|----------------------------|-------------------|
| 0 - 2                      | Zona húmeda       |
| 2 - 3                      | Zona semiárida    |
| 3 - 6                      | Zona árida        |
| > 6                        | Zona subdesértica |

A continuación se resumen los valores obtenidos, así como la designación de la zona correspondiente para las estaciones seleccionadas:

Pmedia anual: 603.3 mm

Tmedia anual: 16.1 °C

Índice Dantin-Revenga: 2,7

Designación: Zona semiárida

### PLUVIOSIDAD DE LANG

Se define como la expresión siguiente:

$$f \cdot P = \frac{P}{t}$$

Donde,

P = Precipitación media mensual expresada en mm

Temperatura media anual en °C

Pmedia anual: 603,3 mm

Tmedia anual: 16,1 °C

Índice LANG: 37.5

### 1.4.2. Climodiagramas

Los climodiagramas constituyen una forma habitual de representar el clima regional, para contrastar y establecer similitudes climáticas entre localidades y zonas.

Para este estudio se determinan los climodiagramas de Walter-Gaussen (Diagrama ombrotérmico) y el diagrama de Termohietas.

### CLIMODIAGRAMA DE WALTER-GAUSSEN

En el diagrama de Walter-Gaussen (Diagrama ombrotérmico), se reflejan los datos de temperatura y precipitación medias mensuales.

Se escogen, para la representación gráfica, una escala de precipitaciones en mm, el doble de las temperaturas en grados centígrados, según la hipótesis de GAUSSEN (1954-55), de equivalencia entre 2 mm de precipitación y 1°C de temperatura. Se denomina Curva Ómbrica aquella definida para las precipitaciones, y la Curva Térmica a la definida para las temperaturas.

Cuando la curva ómbrica supera la curva térmica (P<sub>media mensual</sub> > 2 · T<sub>media mensual</sub>) se consideran meses húmedos. Pero al contrario, cuando la curva ómbrica no supera a la térmica (P<sub>media mensual</sub> < 2 · T<sub>media mensual</sub>) se consideran meses <u>secos</u>.

GAUSSEN toma como índice xerotérmico, el número de días biológicamente secos. Así tenemos que:

Índice de Gaussen: 60 días

Después de ver los diagramas, deducimos que:

- La distribución anual de temperaturas tiene un régimen característico de zonas templadas en la costa de levante. Las precipitaciones mínimas se presentan en los meses de junio a agosto, cuando la curva térmica supera a la ómbrica.
- Los periodos húmedos comienzan en septiembre y finalizan en mayo.

### CLIMODIAGRAMA DE TERMOHIETAS

Se utilizan para definir regímenes climáticos de diferentes localidades y establecer comparaciones. Este diagrama está constituido por la precipitación y la temperatura media mensual, utilizando un sistema de coordenadas cartesianas regulares.

La combinación de los valores de precipitación media y temperatura media para cada mes, da 12 puntos que se unen para líneas que indican el ciclo de medias mensuales de todo el año. Los datos empleados en el diagrama de termohietas son, en su mayoría, la media de muchos meses de registro y proporcionan así una expresión del régimen característico anual o ciclo climático.

El climodiagrama muestra una curva que no se superpone, lo cual refleja el régimen de temperaturas templado y la variación de precipitaciones no tan regular, y a la vez de máximos y mínimos contrapuestos.

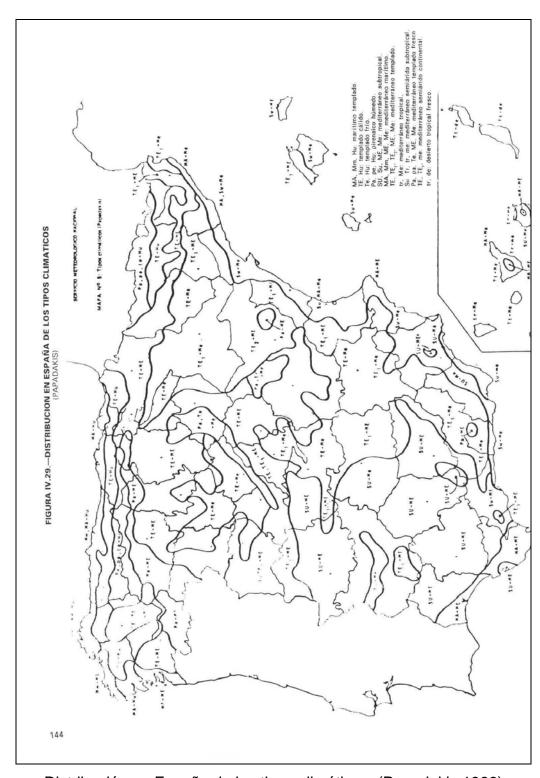
### 1.4.3. Clasificación Climática de Papadakis

Papadakis distingue diez grupos fundamentales de climas. Cada grupo se caracteriza por regímenes específicos de temperatura y humedad, subdividiéndose en una serie de tipos climáticos más precisos y detallados (entre 8 y 9).

Estos tipos climáticos están caracterizados por el tipo posible de cultivo, por las localidades y tipo de paisaje en el que aparecen los tipos climáticos. Se pueden realizar subdivisiones posteriores según los valores más precisos de humedad o temperatura.

Este sistema de clasificación es bastante laborioso, pero tiene la ventaja de que los datos que se necesitan son sencillos y de fácil obtención.

La clasificación de Papadakis utiliza, fundamentalmente, parámetros basados en valores extremos de las variables climatológicas, que son más representativos y limitantes para estimar las respuestas y condiciones óptimas de los diferentes cultivos que los empleados en las clasificaciones basadas sólo en valores medios. Esta clasificación agroclimática se ha de considerar como una caracterización agroecológica a nivel macroclimático, y nunca como un caso a nivel meso o microclimático, ya que en estos niveles intervienen de forma importante factores como la topografía o el relieve.


Los umbrales fijados para caracterizar los tipos climáticos no son arbitrarios, sino que corresponden a los límites naturales de determinados cultivos. En este aspecto resultan relevantes:

- Frío invernal.
- Calor estival.
- Aridez y distribución anual.

Con estos parámetros se definen los tipos de invierno y de verano y los regímenes térmicos y de humedad, así como, finalmente, los grupos climáticos fundamentales.

Para la zona de estudio, observando la clasificación presentada por Papadakis sobre el mapa de España, resulta la siguiente denominación: 'MA, Su-Me'. Las características son:

- 'MA' (marítimo cálido): Con un tipo de invierno 'Ci': Temperatura media de las mínimas absolutas del mes más frío 7 a -2,5º y temperatura media de les máximas del mes más frío de 5 a 10º. Tipo de verano 'O' y 'M', estación libre de heladas son las de temperatura mínima >4º, y la media de la media máxima en meses cálidos de 21 a 25º.
- 'Su' (subtropical semicàlido): Con invierno tipo 'Ci' y verano tipo 'g', algo menos cálido.
- 'Me' (seco): Índice anual de humedad entre 0,22 y 0,88; y en uno o más meses con la media de las máximas >15º, el agua disponible cubre completamente la Evapotranspiración Potencial.



Distribución en España de los tipos climáticos. (Papadakis 1966)

### 1.4.4. Clasificación Climática de Thornthwaite

El parámetro fundamental para esta clasificación es la Evapotranspiración Potencial (EVP, o Ep) y la precipitación (P).

Para encontrar la **Ep**, se utiliza la fórmula:

$$E_p = 1.6 \cdot \left(\frac{10 \cdot t}{I}\right)^a$$

Donde,

Ep: Evapotranspiración potencial (mm/mes)

t: temperatura media mensual en grados centígrados

I: Índice de calor anual

a:  $0,492 + 0,01179 \cdot I - 0,0000771 \cdot I^2 + 0,000000675 \cdot I^3$ 

El índice de calor anual I se calcula a partir de las temperaturas medias de los doce meses:

$$I = \sum_{i=1}^{12} \left(\frac{t_i}{5}\right)^{1.5}$$

Tratándose de una zona de insolación normal (latitud <10°), la Ep calculada no se ha de corregir para ningún coeficiente.

| ОСТ. | NOV. | DIC. | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. |
|------|------|------|------|------|------|------|------|------|------|------|------|
| 17.7 | 12.6 | 9.8  | 9.3  | 10.3 | 12.1 | 14.2 | 17.0 | 20.8 | 23.7 | 23.5 | 21.3 |

Temperaturas medias mensuales, °C

La temperatura media mensual es 16,0 °C, y la precipitación media mensual es 51,0 mm. El índice de calor anual resulta:

$$I = 71,6$$

I la evapotranspiración potencial:

Ep = 1,19 mm/mes

A partir de aquí y para clasificar climáticamente la zona, se definen una serie de índices:

 Índice de humedad (Ih): para un clima húmedo, donde la precipitación de un mes determinado (P) excede la necesidad de agua, expresada como evapotranspiración potencial (Ep).

$$I_h = \frac{P - Ep}{Ep} \cdot 100$$

 Índice de aridez (I<sub>a</sub>): aplicable cuando la precipitación, en un mes dado, es inferior a la evapotranspiración potencial.

$$I_a = \frac{Ep - P}{Ep} \cdot 100$$

Considerando la heterogeneidad de la precipitación en las diferentes épocas del año y, en consecuencia, la influencia desigual de los índices de aridez y humedad, Thornthwaite define un índice hídrico anual ( $I_m$ ).

$$I_m = I_h - 0.6 \cdot I_a$$

Mediante este índice de humedad  $I_m$  se establecen los tipos climáticos siguientes:

| I <sub>m</sub> | Tipo de clima   | Símbolo |
|----------------|-----------------|---------|
| > 100          | Prehúmedo       | А       |
| 100 – 80       | Húmedo IV       | $B_4$   |
| 80 – 60        | Húmedo III      | $B_3$   |
| 60 – 40        | Húmedo II       | $B_2$   |
| 40 – 20        | Húmedo I        | $B_1$   |
| 20 – 0         | Subhúmedo       | $C_2$   |
| 0 - (-20)      | Seco, subhúmedo | $C_1$   |
| (-20) – (-40)  | Semiárido       | D       |
| (-40) - (-60)  | Árido           | Е       |

Clasificación climática de Thornthwaite (1948).

La zona en cuestión resulta ser **PREHÚMEDO A** ( $I_m > 100$ ).

### 2. HIDROLOGÍA. ALTERNATIVAS 1 Y 2

### 2.1. DATOS PREVIOS

Los cálculos incluidos en los apartados de Hidrología son comunes, y válidos para las dos alternativas analizadas en este estudio informativo: "Alternativa 1 bajo la calle Sansón" y "Alternativa 2 sobre la calle Sansón".

Para el cálculo de las máximas intensidades de lluvia esperadas, se parte de los datos obtenidos de las estaciones pluviométricas disponibles, más próximas a la zona de actuación, y que podemos considerar representativas del régimen de lluvias de la misma.

Los datos pluviométricos referidos han sido proporcionados por la Agencia Estatal de Meteorología del Ministerio de Medio Ambiente, y constituyen una serie suficientemente amplia como para permitir realizar extrapolaciones estadísticas con los mismos.

Para el cálculo de las intensidades medias de precipitación a emplear en la estimación de caudales, se ha seguido lo establecido en la Instrucción de Carreteras 5.2-IC.

### 2.2. ESTUDIO DE PRECIPITACIONES

Para el cálculo de las máximas intensidades de lluvia prevista en la zona para distintos intervalos de tiempo y correspondiente a diferentes períodos de retorno, utilizamos el método de GUMBEL, considerando como valores de las máximas precipitaciones probables en la zona la media de los resultados obtenidos por cada una de las estaciones analizadas.

Para ver, a priori, si la serie de valores máximos anuales se ajusta a la distribución de GUMBEL, puede utilizarse un papel de probabilidad extrema (ver gráficos adjuntos). En abscisas se lleva la variable reducida (Yt). Sobre la vertical se llevan

los correspondientes valores máximos. Si los puntos representativos están más o menos alineados, la distribución se ajusta a la del tipo GUMBEL, tanto mejor cuanto más alineados estén.

Para el cálculo de la línea de mejor ajuste nos basamos en los siguientes valores obtenidos para las distintas estaciones:

- o Yn = media de la variable reducida.
- Sn = desviación típica de la variable reducida Yt , obtenida a partir de la relación:

$$Y_t = - Ln \left( Ln \frac{n+1}{m} \right)$$

- X = media de los valores extremos.
- Sx = desviación típica de los valores extremos.

$$X_t = \overline{X} + \frac{Y_t - Y_n}{S_n} Sx$$

Los valores de la variable reducida Yt para distintos periodos de retorno vienen dados por:

Siendo:

T = período de retorno en años

| Т  | 2      | 5      | 10     | 15     | 20     | 25     | 30     | 50     | 100    | 500    |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Yt | 0,3665 | 1,4999 | 2,2504 | 2,6738 | 2,9702 | 3,1985 | 3,3843 | 3,9019 | 4,6001 | 6,2136 |

Para verificar la bondad de ajuste a la distribución de GUMBEL, trazamos unos "puntos de control" a ambos lados de la línea teórica, siendo la situación de éstos puntos tal que la distancia vertical de aquellas a éstos es igual al error típico de la observación del lugar de orden "m" en una muestra tomada de una población cuya función de probabilidad acumulada viene representada por la línea teórica. El intervalo entre estos puntos es una zona de confianza de probabilidad del 68 % y si casi todos los puntos caen dentro de este intervalo se considera que la línea teórica se ajusta a las observaciones satisfactoriamente.

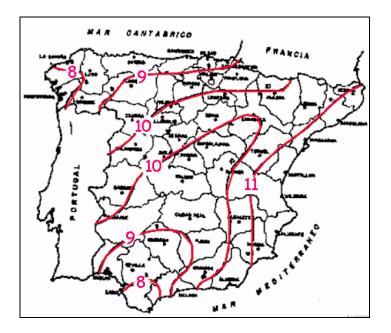
Para el "error típico", GUMBEL da una tabla:

| Periodo de Retorno ( T )          | 2                | 5                             | 10                            | 20                            | Т       | 50      |
|-----------------------------------|------------------|-------------------------------|-------------------------------|-------------------------------|---------|---------|
| Error típico ( σ <u>) 0,54 .d</u> | (n) <sup>½</sup> | 0,86 .d<br>(n) <sup>1/2</sup> | 1,23 .d<br>(n) <sup>1/2</sup> | 1,73 .d<br>(n) <sup>1/2</sup> | 0,43 .d | 0,43 .d |

Siendo:  $\mathbf{d} = \mathbf{X}_{20} - \mathbf{X}_{2}$  (diferencia de los valores extremos correspondientes a un período de retorno de 20 y 2 años respectivamente).

Los valores de  $\mathbf{X}_t$  y  $\sigma$  para las distintas estaciones estudiadas aparecen en la tabla que se acompaña.

En los gráficos representativos de cada una de las estaciones pluviométricas figuran la distribución de puntos de la serie histórica de datos, la recta de máximo ajuste y los puntos de control que definen la zona en que debe encontrarse la nube de puntos para que el ajuste de GUMBEL efectuado sea válido.


La precipitación máxima en 24 h., la consideramos como la media de las precipitaciones máximas obtenidas para cada una de las estaciones pluviométricas analizadas.

En el Apéndice 3 se incluyen las hojas de cálculo justificativas, para todas las estaciones pluviométricas consideradas.

### 2.3. CURVAS DE INTENSIDAD-DURACIÓN

A continuación realizamos el cálculo de las Intensidades medias de Precipitación (It) correspondientes a diferentes períodos de retorno y para tiempos de duración del aguacero comprendidos entre 10 minutos y 24 horas por medio de la fórmula establecida en la ya mencionada Instrucción de Carreteras 5.2-IC "Drenaje Superficial":

$$\frac{28^{0.1} - t^{0.1}}{1d} = \left(\frac{11}{1d}\right) = \frac{28^{0.1} - 1}{28^{0.1}}$$

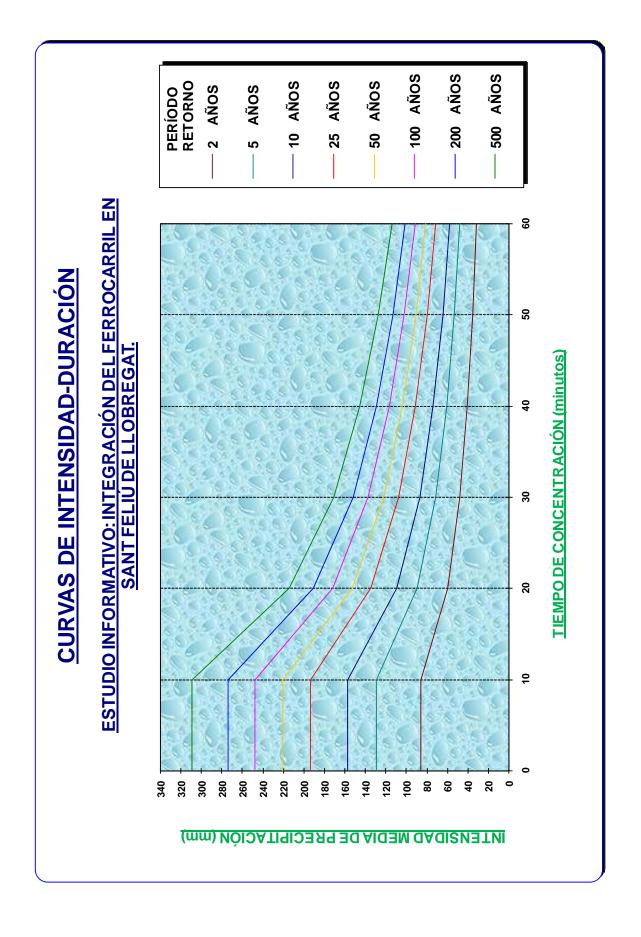


Siendo:

- Id ( mm/h) Intensidad media diaria de precipitación, correspondiente al período de retorno considerado. Es igual a Pd / 24.
- o Pd (mm) Precipitación total diaria correspondiente a dicho período de retorno.

- O I1 (mm/h) Intensidad horaria de precipitación correspondiente a dicho período de retorno. El valor de la razón I<sub>1</sub> / I<sub>d</sub> lo tomamos de la Instrucción de Carreteras 5.2-I.C. (figura 2.2). En el caso que nos ocupa I<sub>1</sub>/I<sub>d</sub> = 11.
- t (h) Duración del intervalo al que se refiere I, que se tomará igual al tiempo de concentración.

Teniendo en cuenta lo anteriormente expuesto, y aplicando esta fórmula, obtenemos el siguiente cuadro adjunto y las correspondientes Curvas de Intensidad-Duración:


### INTENSIDADES MEDIAS DE PRECIPITACIÓN It (mm/h)

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

SEGÚN ESTUDIO ESTADÍSTICO DE PLUVIOMETRÍA. ISOLINEA 11/Id = 11

| DURACIÓN<br>AGUACERO<br>( h.) |
|-------------------------------|
| 24                            |
| 12                            |
| 6                             |
| 2                             |
| 1                             |
| 0,83                          |
| 0,67                          |
| 0,50                          |
| 0,33                          |
| 0,17                          |

| PERÍODO DE RETORNO |       |        |        |        |        |        |        |        |        |
|--------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
|                    | 5     | 10     | 15     | 20     | 25     | 50     | 100    | 200    | 500    |
| ) 4                | 4,95  | 6,05   | 6,67   | 7,10   | 7,44   | 8,47   | 9,49   | 10,50  | 11,85  |
| 5 8                | 8,65  | 10,57  | 11,65  | 12,41  | 12,99  | 14,79  | 16,57  | 18,35  | 20,70  |
| ) 1                | 14,56 | 17,79  | 19,61  | 20,89  | 21,87  | 24,89  | 27,90  | 30,89  | 34,83  |
| 1 3                | 30,97 | 37,84  | 41,71  | 44,42  | 46,51  | 52,94  | 59,33  | 65,69  | 74,09  |
| 4 4                | 47,86 | 58,47  | 64,45  | 68,64  | 71,87  | 81,81  | 91,68  | 101,52 | 114,49 |
| 3 5                | 53,40 | 65,24  | 71,92  | 76,59  | 80,19  | 91,29  | 102,30 | 113,27 | 127,74 |
| 2 6                | 60,90 | 74,40  | 82,01  | 87,35  | 91,45  | 104,10 | 116,66 | 129,17 | 145,68 |
| 9 7                | 71,84 | 87,76  | 96,74  | 103,03 | 107,87 | 122,80 | 137,61 | 152,37 | 171,84 |
| 4 8                | 89,95 | 109,88 | 121,13 | 129,00 | 135,07 | 153,75 | 172,30 | 190,77 | 215,15 |
| 0 12               | 29,42 | 158,10 | 174,28 | 185,61 | 194,33 | 221,22 | 247,90 | 274,49 | 309,56 |
| 4 8                | 89,95 | 109,88 | 121,13 | 129,00 | 135,07 | 153,75 | 172,30 | 190,7  | 7      |



### 2.4. PERÍODO DE RETORNO

Las obras de drenaje transversal se comprueban para un período de retorno de 500 años. Las obras de drenaje longitudinal se comprueban para un período de retorno de 50 años. Los bombeos previstos se calculan para caudales correspondientes a un período de retorno de 500 años.

### 2.5. CÁLCULO DE LOS TIEMPOS DE CONCENTRACIÓN

Para el cálculo de los tiempos de concentración se utiliza la fórmula recomendada por la Instrucción 5.2-I.C.

$$Tc = 0.30 \cdot \left(\frac{L}{J^{\frac{1}{4}}}\right)^{0.76}$$

Siendo:

- Tc = Tiempo de concentración en horas.
- L = Longitud de recorrido del curso principal en Km.
- o J = Pendiente media del curso principal en tanto por uno.

No obstante, cuando los valores de Tc resultan inferiores a 10 minutos, se contabiliza siempre Tc=10 minutos.

### 2.6. ESTIMACIÓN DEL UMBRAL DE ESCORRENTÍA.

El cálculo del umbral inicial de escorrentía se ha realizado estimando, para cada cuenca que interviene en el estudio, la parte de superficie que tiene de cada uso de terreno, su pendiente y el tipo de suelo, según están definidos en la Instrucción 5.2-IC de "Drenaje Superficial", en sus tablas  $n^{os}$  1 y 2.

Las cuencas estudiadas tienen, pendientes superiores al 3 por ciento, están formadas por masas vegetales de pradera, bosques de pino, matorral y monte bajo, y manchas de almendro y algarrobo, e incluyen zonas improductivas en las

proximidades de Sant Feliú. Son, en general, suelos englobables dentro del grupo "C" con infiltración lenta cuando están húmedos. Así, se ha realizado la estimación del umbral inicial de escorrentía P<sub>o, inicial</sub> en las cuencas.

Para la zona de las obras se adopta, según la figura extraída de la misma Instrucción 5.2-IC, un coeficiente corrector Coef.Corrector (Po, inicial) de valor 2,5 que refleja la variación regional de la humedad habitual en el suelo al comienzo de los aguaceros significativos, al tiempo que engloba una mayoración, del orden del 100% del valor del umbral de escorrentía, con objeto de limitar las sobrevaloraciones que se pueden obtener en la determinación de caudales por aplicación del método hidrometeorológico.

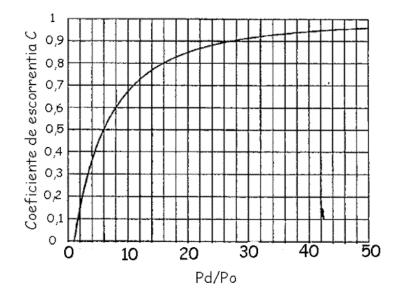


MAPA DEL COEFICIENTE CORRECTOR DEL UMBRAL DE ESCORRENTÍA.

El resultado final del umbral de escorrentía P<sub>o</sub>, adoptado para la determinación del coeficiente C de escorrentía, se obtiene aplicando la expresión:

 $P_o = P_{o. inicial}$ . Coef.Corrector (Po, inicial)

### 2.7. CÁLCULO DE LOS COEFICIENTES DE ESCORRENTÍA.


El coeficiente de escorrentía, que define la proporción que la componente superficial de la precipitación supone respecto a la total caída sobre una cuenca, dependerá de la razón entre la precipitación diaria  $P_d$  correspondiente a la intensidad de dicha lluvia I y a su período de retorno T y la precipitación  $P_o$  o umbral de escorrentía a partir de la cual se inicia ésta. La determinación de dicho coeficiente C se ha realizado con la expresión:

$$C = \frac{(Pd - Po) \cdot (Pd + 23 Po)}{(Pd + 11 Po)^{2}}$$

no tomándose nunca inferior a cero y hallándose su media ponderada por las superficies a las que afecta en caso de ser una cuenca heterogénea.

Con los parámetros  $P_d$  y  $P_o$  determinados en los puntos anteriores y la aplicación de la fórmula descrita para la obtención del coeficiente de escorrentía C, se determina éste para cada una de las cuencas y para los períodos de retorno utilizados.

Esta fórmula está representada en la siguiente figura:



Siendo:

- C Coeficiente de escorrentía
- Pd (mm) La Precipitación total diaria correspondiente al período de retorno considerado.
- Po (mm) Umbral de escorrentía corregido.

### 2.8. CÁLCULO DE CAUDALES

Se han identificado, sobre la cartografía a escala 1/50.000 los cursos de agua estudiados, así como sus cuencas receptoras.

El caudal de cálculo de aguas pluviales se ha obtenido por el método hidrometeorológico fijado por la Instrucción de Carreteras del Ministerio de Fomento:

$$Q = \frac{C.I.A}{3.000}$$

Siendo:

- Q = Caudal de máxima avenida en l/s.
- o C = Coeficiente de escorrentía para el período de retorno considerado.
- A = Superficie de la cuenca de aportación en  $m^2$ .
- I = Intensidad, expresada en mm/h de la lluvia media previsible en un período de retorno dado para una duración de la precipitación igual al tiempo de concentración.

Se estima que las máximas crecidas se corresponden con duraciones de temporal igual al tiempo de concentración, que es el que tarda en llegar al punto estudiado, los caudales producidos por las precipitaciones.

# CÁLCULO DE CAUDALES DE MÁXIMAS AVENIDAS MÉTODO HIDROMETEOROLÓGICO (Instrucción 5.2-IC Drenaje Superficial)

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

PERÍODO DE RETORNO CONSIDERADO:

T = 50 años.

|                               | $I_{d}$ ( T= 50 ): 7,44  | 7,44  |      | $I_1/I_d$ : 11 | 11      |      |              |                                         |                                         |
|-------------------------------|--------------------------|-------|------|----------------|---------|------|--------------|-----------------------------------------|-----------------------------------------|
| CUENCA                        | SUPERFICIE<br>APORTACIÓN | Ŧ     | ٦    | -              | Tc      | Ö    | l( 50 años ) | Q <sub>II</sub> (50 años)<br>APORTACIÓN | Q <sub>II</sub> (50 años)<br>APORTACIÓN |
|                               | m <sup>2</sup>           | E     | Km   | m/m            | minutos |      | mm/h         | m³/s                                    | l/s                                     |
|                               |                          |       |      |                |         |      |              |                                         |                                         |
| Riera de Pahissa              | 6.575.000                | 367,6 | 5,55 | 0,0662         | 110,90  | 0,50 | 55,718       | 61,63                                   | 61.632,03                               |
| Riera de la Salut             | 5.950.000                | 455,6 | 4,95 | 0,0920         | 95,50   | 0,51 | 61,310       | 62,29                                   | 62.285,98                               |
| Intercuenca Sant Feliu        | 000.009                  | 92,0  | 1,50 | 0,0633         | 41,38   | 09'0 | 102,065      | 12,21                                   | 12.213,15                               |
| Urbanización Torreblanca      | 550.000                  | 88,0  | 1,25 | 0,0704         | 35,31   | 0,73 | 111,897      | 14,88                                   | 14.881,43                               |
| Boquilla de entrada           | 1.100                    | 1,3   | 0,07 | 0,0180         | 5,12    | 0,88 | 307,234      | 0,099                                   | 98,95                                   |
| Boquilla de salida            | 3.200                    | 4,5   | 0,27 | 0,0165         | 14,51   | 0,52 | 182,499      | 0,101                                   | 100,61                                  |
| Rejas de ventilación estación | 30                       | 92,0  | 1,50 | 0,0633         | 41,38   | 0,98 | 102,065      | 0,00100                                 | 1,00                                    |
|                               |                          |       |      |                |         |      |              |                                         |                                         |

# CÁLCULO DE CAUDALES DE MÁXIMAS AVENIDAS MÉTODO HIDROMETEOROLÓGICO (Instrucción 5.2-IC Drenaje Superficial)

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

T = 500 años. PERÍODO DE RETORNO CONSIDERADO:

Q<sub>II</sub> (500 años) APORTACIÓN 105.955,20 106.707,36 20.144,90 23.301,42 145,79 171,99 1,41 <u>|</u>|| Q<sub>II</sub> (500 años) APORTACIÓN 0,15 0,17 0,00141 105,96 106,71 20,14 23,30 m<sup>3</sup>/s ( 500 años ) 77,970 85,796 142,827 156,586 429,935 255,385 142,827 0,92 0,63 0,99 0,62 0,63 0,71 0,81 O 110,90 95,50 41,38 35,31 5,12 14,51 41,38 ဦ 0,0662 0,0920 0,0633 0,0704 0,0180 0,0165 0,0633 7 5,55 4,95 1,50 1,25 0,07 0,27 1,50 \_ 367,6 455,6 95,0 88,0 1,3 4,5 95,0 10,41 I SUPERFICIE APORTACIÓN m² 500): 6.575.000 5.950.000 600.000 550.000 1.100 3.200 30 Boquilla de entrada Boquilla de salida Rejas de ventilación estación Riera de Pahissa Riera de la Salut Intercuenca Sant Feliu Urbanización Torreblanca CUENCA VERTIENTE

### 3. DRENAJE

### 3.1. DRENAJE LONGITUDINAL. ALTERNATIVAS 1 Y 2

Los cálculos incluidos en los apartados de Drenaje longitudinal son comunes, y válidos para las dos alternativas analizadas en este estudio informativo: "Alternativa 1 bajo la calle Sansón" y "Alternativa 2 sobre la calle Sansón".

Al tratarse de una obra subterránea el drenaje implica necesariamente la instalación de un sistema de bombeo para la correcta evacuación de las aguas recogidas, ya que la red de saneamiento es más superficial que el trazado de la infraestructura proyectada.

Se contempla por lo tanto el sistema de evacuación de las aguas provenientes tanto de la infiltración que se produce a través de pantallas, como de aquellos caudales que llegan a través del sistema de ventilación y emergencia del túnel y de las rampas de entrada y salida.

El sistema de drenaje permite pues recoger los aportes de agua en el túnel procedente de filtraciones o de agua de lluvia que se infiltra por las rejas de ventilación en superficie, y conducirla hacia los pozos de bombeo para su evacuación final.

Básicamente, el sistema de drenaje proyectado se compone de los siguientes elementos indicados en los planos de drenaje que se incluyen en este anejo:

- Canaletas rectangulares de hormigón en los bordes de la línea, en los tramos a cielo abierto, que recoge los caudales de aguas pluviales.
- Colector longitudinal central de hormigón, en todo el tramo en túnel (tanto los tramos de túnel entre pantallas como el tramo de túnel en mina).
- Caz prefabricado de hormigón. Se sitúa uno en el centro de cada vía y otros dos en los extremos; en total cuatro líneas de caz.

- Canaletas transversales rectangulares, moldeadas en el hormigón de relleno,
   y espaciadas cada 10 m.
- Arquetas de hormigón armado dispuestas cada 10 m, que comunican las canaletas transversales con el colector longitudinal.
- Colectores de desagüe a los pozos de desagüe. Vierten los caudales del colector central hasta los pozos de bombeo.
- Pozos de bombeo, provistos cada uno de sus correspondientes bombas de impulsión.

Para el diseño de la red de drenaje se han seguido los siguientes criterios generales utilizados para el drenaje de túneles, y sancionados por la experiencia en este tipo de proyectos:

- Si bien las obras no afectan el nivel freático, por seguridad, se considera un caudal de infiltración de 5 l/s/km, valor habitual en tramos de túnel construidos entre pantallas.
- Los caudales de aportación proceden fundamentalmente de las rampas de las bocas de entrada y de salida del túnel, de las rejas de las bocas de ventilación de la estación y los indicados anteriormente procedentes de posibles filtraciones.
- Para determinar la capacidad de los pozos de bombeo, se supone un tiempo máximo de corte del suministro eléctrico de 1,00 hora.
- El período de retorno elegido para el diseño de los diferentes elementos de drenaje longitudinal es de 50 años.

Para justificar hidráulicamente la capacidad de los elementos de drenaje proyectados se ha utilizado en los cálculos la fórmula de Manning-Strikler recogida por la Instrucción 5.2-IC "Drenaje Superficial".

Se ha realizado la comprobación para los siguientes casos:

- Canaleta rectangular de hormigón.
- Colector longitudinal de hormigón.
- Caz prefabricado de hormigón.
- Canaletas transversales rectangulares en hormigón de relleno, espaciadas cada 10 m.
- Colectores de desagüe a los pozos de desagüe.

En función de los caudales obtenidos, se comprueba la capacidad hidráulica de las conducciones en las secciones consideradas, aplicando las ecuaciones de Manning para régimen libre:

$$V = \frac{1}{n} R^{2/3} J^{1/2}$$

$$Q = S_m V$$

Siendo:

o V Velocidad en m/s

o R Radio hidráulico

O S<sub>m</sub> Sección mojada

o P<sub>m</sub> Perímetro mojado

o J Pendiente longitudinal media del colector en tanto por uno.

o n Coeficiente de rugosidad de Manning, que depende del material con que esté fabricada la superficie interior del colector.

Q Caudal en m³/s.



|                                                                       | ď                             | ۵         | Š         | ANCHO     | CALADO     | ¥     | ALPHA   | S     | ᇤ     | 듄     | <b>c</b> | -      | 2      |      |
|-----------------------------------------------------------------------|-------------------------------|-----------|-----------|-----------|------------|-------|---------|-------|-------|-------|----------|--------|--------|------|
| OBKA DE DRENAJE                                                       | S/I                           | Ε         | Conductos | Ε         | Ε          | rad.  | grad.   | ~E    | Ε     | Ε     | Manning  | (/1)   | FROUDE | s/E  |
| CANALETA RECTANGULAR DE HORMI                                         | <u>HORMIGÓN</u> (0,40 × 0,40) | ) x 0,40) |           |           |            |       |         |       |       |       |          |        |        |      |
| Boquilla de entrada<br>Boquilla de salida                             | 98,95<br>100,61               |           | 7 7       | 0,40      | 0,043      | 1 1   | 1 1     | 0,034 | 0,972 | 0,035 | 0,013    | 0,0299 | 2,21   | 1,44 |
| COLECTOR LONGITUDINAL HORMIGÓN                                        | 킬                             |           |           |           |            |       |         |       |       |       |          |        |        |      |
| Boquilla entrada - Pozo Bombeo 1                                      | 00'66                         | 0,400     | -         |           | 0,150      | 1,320 | 75,640  | 0,043 | 0,528 | 0,082 | 0,013    | 0,0250 | 1,89   | 2,26 |
| Pozo Bombeo 1 - Pozo Bombeo 2                                         | 1,93                          | 0,400     | -         |           | 0,022      | 0,473 | 27,101  | 0,003 | 0,189 | 0,014 | 0,013    | 0,0250 | 1,54   | 0,72 |
| Boquilla salida - Pozo Bombeo 3. Tramo 1                              | 102,31                        | 0,400     | <b>-</b>  |           | 0,153      | 1,334 | 76,435  | 0,044 | 0,534 | 0,083 | 0,013    | 0,0250 | 1,89   | 2,3  |
| Boquilla salida - Pozo Bombeo 3. Tramo 2                              | 102,31                        | 0,400     | -         |           | 0,163      | 1,385 | 79,378  | 0,048 | 0,554 | 0,087 | 0,013    | 0,0198 | 1,68   | 2,1  |
| Boquilla salida - Pozo Bombeo 3. Tramo 3                              | 102,31                        | 0,600     | -         |           | 0,265      | 1,455 | 83,383  | 0,121 | 0,873 | 0,138 | 0,013    | 0,0017 | 0,53   | 0,8  |
| Pozo Bombeo 3 - Pozo Bombeo 2. Tramo 1                                | 6,07                          | 0,600     | -         |           | 0,064      | 999'0 | 38,153  | 0,016 | 0,400 | 0,041 | 0,013    | 0,0017 | 0,47   | 0,3  |
| Pozo Bombeo 3 - Pozo Bombeo 2. Tramo 2                                | 6,07                          | 0,400     | -         |           | 0,036      | 0,611 | 34,982  | 900'0 | 0,244 | 0,023 | 0,013    | 0,0299 | 1,81   | 1,0  |
| CAZ PREFABRICADO HORMIGÓN. SECCIÓN ARCO DE CIRCULO                    | CIÓN AR                       | CO DE     | SIRCULO   |           |            |       |         |       |       |       |          |        |        |      |
| Desagüe caz sobre arqueta cada 10 m.                                  |                               | 0,400     | 4         |           | 0,070      | 0,863 | 49,458  | 0,015 | 0,345 | 0,043 | 0,013    | 0,0250 | 1,80   | 4,1  |
|                                                                       |                               | 0,400     | 4         |           | 0,070      | 0,863 | 49,458  | 0,015 | 0,345 | 0,043 | 0,013    | 0,0198 | 1,60   | 1,32 |
|                                                                       |                               | 0,400     | 4         |           | 0,070      | 0,863 | 49,458  | 0,015 | 0,345 | 0,043 | 0,013    | 0,0017 | 0,47   | 0,3  |
|                                                                       |                               | 0,400     | 4         |           | 0,070      | 0,863 | 49,458  | 0,015 | 0,345 | 0,043 | 0,013    | 0,0299 | 1,96   | 7,0  |
| COLECTORES DE DESAGÜE AL POZO                                         | POZO DE BOMBEO                | 잂         |           |           |            |       |         |       |       |       |          |        |        |      |
| Colector longitudinal - Pozo Bombeo 1                                 | 00'66                         | 0,300     | -         |           | 0,189      | 1,835 | 105,142 | 0,047 | 0,551 | 0,085 | 0,013    | 0,0200 | 1,55   | 2,1  |
| Colector longitudinal - Pozo Bombeo 2                                 | 8,00                          | 0,300     | _         |           | 0,049      | 0,834 | 47,797  | 0,008 | 0,250 | 0,030 | 0,013    | 0,0200 | 1,52   | 1,06 |
| Colector longitudinal - Pozo Bombeo 3                                 | 102,31                        | 0,300     | -         |           | 0,194      | 1,865 | 106,861 | 0,048 | 0,560 | 0,086 | 0,013    | 0,0200 | 1,54   | 2,1; |
| CANALETA TRANSVERSAL RECTANGULAR EN HORMIGÓN DE RELLENO (0,40 x 0,07) | JLAR EN H                     | HORMIC    | ÓN DE REL | LENO (0,4 | 10 × 0,07) |       |         |       |       |       |          |        |        |      |
| CANALETAS TRANSVERSALES CADA 10 m.                                    |                               |           | 2         | 0,40      | 0,070      |       | ,       | 0,056 | 1,080 | 0,052 | 0,013    | 0,0050 | 0,91   | 0,76 |
|                                                                       |                               |           |           |           |            |       |         |       |       |       |          |        |        |      |

98,95 100,61

LLUVIA I/s

### 3.2. POZOS DE BOMBEO. ALTERNATIVA 1

Se ha previsto la ejecución de tres Pozos de Bombeo, situados en los siguientes puntos:

### POZO DE BOMBEO Nº 1.

Se sitúa en el PK 88+300. Recoge los siguientes caudales:

- Caudal de aguas pluviales procedentes de la boquilla de entrada del túnel (PK 88+290).
- o Caudal procedente de filtraciones en el tramo comprendido entre la boquilla de entrada del túnel y el pozo de bombeo nº 1.

### POZO DE BOMBEO Nº 2.

Se sitúa en el Pozo de Salida de Emergencia, a la altura del PK 88+685. Recoge los siguientes caudales:

- o Caudal procedente de las rejillas de ventilación de la estación.
- o Caudal procedente de filtraciones en el tramo comprendido entre el pozo de bombeo nº 1 y el pozo de bombeo nº 3.

### POZO DE BOMBEO Nº 3.

Se sitúa en el PK 89+500. Recoge los siguientes caudales:

- Caudal de aguas pluviales procedentes de la boquilla de salida del túnel (PK 89+840).
- Caudal procedente de filtraciones en el tramo comprendido entre el pozo de bombeo nº 3 y la boquilla de salida del túnel.

El bombeo del agua almacenada en estos pozos se realizará a los siguientes puntos en cada caso:

- POZO DE BOMBEO Nº 1. Bombeo sobre colector existente a unos 20 m de distancia, a la altura del PK 88+320.
- POZO DE BOMBEO Nº 2. Bombeo sobre colector existente a unos 20 m de distancia, a la altura del PK 88+695.

POZO DE BOMBEO Nº 3. Bombeo sobre colector de Terriser, situado a unos
 20 m de distancia, a la altura del PK 89+510.

### 3.3. POZOS DE BOMBEO. ALTERNATIVA 2

En esta alternativa se consideran igualmente tres Pozos de Bombeo, que cumplirán la misma funcionalidad descrita en la alternativa Nº1. En este caso irán ubicados en los P.K. 89+500, 88+500 y 88+800.

Para el cálculo de los caudales a bombear se considera el caudal que directamente entra por las rampas de entrada y salida del túnel, el que recogen las rejas de ventilación de la estación y el caudal que llega mediante filtración. El volumen de los pozos de bombeo se obtiene suponiendo una parada de bombas de 1,0 hora, para un aguacero de 4,0 h de duración.

Se prevé el bombeo de los siguientes caudales:

### CAUDALES PROCEDENTES DE LAS RAMPAS DE SALIDA DEL TÚNEL

La precipitación recogida por las rampas se valora análogamente al resto de cuencas del estudio hidrológico, adoptando los cálculos de precipitaciones máximas.

### CAUDALES PROCEDENTES DE LAS REJAS DE VENTILACIÓN

Las aperturas de ventilación (dos unidades rectangulares de 10,0 x 3,0 m cada una), captarán agua por la precipitación vertical directa sobre las mismas. La salida de emergencia prevista se encuentran cubierta, por lo que no se prevé ninguna entrada de agua.

### CAUDALES PROCEDENTES DE FILTRACIÓN

De acuerdo con los numerosos sondeos realizados, no se afecta al nivel freático. No obstante, por seguridad se ha estimado una filtración de 5 l/s/Km, valor habitual en los tramos de túnel que discurren entre pantallas.

Estos caudales dependen únicamente del valor de filtración considerada por lo que no variarán para los distintos períodos de retorno considerados.

### CÁLCULO DEL VOLUMEN DE LOS POZOS DE BOMBEO

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT. PERÍODO DE RETORNO CONSIDERADO: T = 50 años. DURACIÓN AGUACERO: 4 horas.

| ÁREAS<br>DE<br>APORTACIÓN                                                                                                                         | Q <sub>II</sub> ( 50 años)<br>APORTACIÓN<br>I/s | <u>LONGITUD</u><br>m               | CAUDAL<br>FILTRACIONES<br>I/s/km | REJAS DE<br>VENTILACIÓN | CAUDAL<br>INTERCEPTADO<br>I/s    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|----------------------------------|-------------------------|----------------------------------|
| Boquilla de entrada<br>Boquilla de salida<br>Rejas de ventilación estación                                                                        | 10,70<br>18,31<br>0,33                          |                                    |                                  | 2                       | 10,70<br>18,31<br>0,33<br>0,65   |
| FILTRACIONES  BOQUILLA ENTRADA-POZO BOMBEO № 1  POZO BOMBEO № 1-POZO BOMBEO № 2  POZO BOMBEO № 3-POZO BOMBEO № 2  BOQUILLA SALIDA-POZO BOMBEO № 3 | 10,00<br>385,00<br>815,00<br>340,00             |                                    | 5,00<br>5,00<br>5,00<br>5,00     |                         | 0,05<br>1,93<br>4,08<br>1,70     |
| POZOS DE BOMBEO ALTERNATIVA 1                                                                                                                     | SITUACIÓN<br>P.K.                               | CAUDAL BOMBEO //s                  | TIEMPO<br>PARADA BOMBAS<br>h     |                         | VOLUMEN DEPÓSITO BOMBEO ADOPTADO |
| POZO DE BOMBEO Nº 1<br>POZO DE BOMBEO Nº 2<br>POZO DE BOMBEO Nº 3                                                                                 | 88+300<br>88+685<br>89+500                      | 10,75 l/s<br>6,65 l/s<br>20,01 l/s | 1 1                              | 39 m3<br>24 m3<br>72 m3 | 80 m3<br>72 m3<br>80 m3          |
| ALTERNATIVA 2 POZO DE BOMBEO № 1                                                                                                                  | 89+640                                          | 38,05 l/s                          | 1                                | 137 m3                  | 140 m3                           |

En cada pozo de bombeo se disponen tres grupos electrobomba sumergible, dos alternativas y otra de emergencia.

Las dos bombas alternativas del pozo de drenaje serán las que realicen la extracción del agua en condiciones normales de funcionamiento. Si una de estas bombas que está en funcionamiento no achica lo suficiente y el nivel sigue subiendo, actuará la sonda del nivel dando alarma y entrando en funcionamiento la segunda bomba alternativa. Si las dos bombas alternativas no pudieran con el caudal de agua,

entraría de forma automática la bomba de emergencia, funcionando las tres bombas simultáneamente.

Tanto las bombas alternativas como la de emergencia, podrán ser puestas en marcha manualmente desde los cuadros de mando correspondientes. El arranque de bombas será automático en función de los niveles ubicados en el pozo de bombeo, o manual por pulsadores al efecto situados en un cuadro de mando en cabina del jefe de estación y también en el propio cuadro de fuerza a pie de bombas.

Desde las bombas hasta el punto de desagüe, en los colectores previstos, se instalarán las tuberías correspondientes, con los elementos de seguridad y de control necesarios para el funcionamiento de la instalación. El disponer de tres unidades de bombeo para cada desagüe, permite flexibilizar el uso de los bombeos en casos de caudales menores. De este modo, se racionaliza el funcionamiento, dando alternancia de uso a cada equipo, consiguiendo un mantenimiento óptimo.

### CÁLCULO DE CAUDALES DE BOMBEO

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT. PERÍODO DE RETORNO CONSIDERADO: T = 500 años.

| ÁREAS<br>DE<br>APORTACIÓN                                                                                                                         | Q <sub>II</sub> ( 500 años)<br>APORTACIÓN<br>I/s          | <u>LONGITUD</u><br>m                                         | CAUDAL<br>FILTRACIONES<br>I/s/km | REJAS DE<br>VENTILACIÓN | CAUDAL<br>INTERCEPTADO<br>I/s    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------|----------------------------------|
| Boquilla de entrada<br>Boquilla de salida<br>Rejas de ventilación estación                                                                        | 145,79<br>171,99<br>1,41                                  |                                                              |                                  | 2                       | 145,79<br>171,99<br>1,41<br>2,82 |
| FILTRACIONES  BOQUILLA ENTRADA-POZO BOMBEO № 1  POZO BOMBEO № 1-POZO BOMBEO № 2  POZO BOMBEO № 3-POZO BOMBEO № 2  BOQUILLA SALIDA-POZO BOMBEO № 3 | 10,00<br>385,00<br>815,00<br>340,00                       |                                                              | 5,00<br>5,00<br>5,00<br>5,00     |                         | 0,05<br>1,93<br>4,08<br>1,70     |
| POZOS DE BOMBEO ALTERNATIVA 1 POZO DE BOMBEO Nº 1 POZO DE BOMBEO Nº 2 POZO DE BOMBEO Nº 3 ALTERNATIVA 2 POZO DE BOMBEO Nº 1                       | SITUACIÓN<br>P.K.<br>88+300<br>88+685<br>89+500<br>89+640 | CAUDAL BOMBEO I/s  145,84 I/s 8,82 I/s 173,69 I/s 331,18 I/s |                                  |                         |                                  |

### 3.4. DRENAJE TRANSVERSAL. CARACTERÍSTICAS GENERALES COMUNES.

### C/VERGE DE MONTSERRAT.

El colector mixto para aguas residuales y pluviales de la C/Verge de Montserrat queda interceptado por la sección del ferrocarril soterrado.

La sección diseñada es un marco bicelular de 2x1,00x0,60 m, atraviesa la vía y forma parte de la losa de cobertura del túnel, respetando el gálibo mínimo de 6,50 m. Esta sección tiene una capacidad hidráulica de 6,17 m³/s. La sección actual es un colector de 0,60x1,10 m, capaz de desaguar 1,94 m³/s.

Durante la ejecución de las obras, se dispondrá un desvío provisional de las aguas para mantener en servicio la red de colectores.

### 2. C/TERRISSER

### Aguas residuales

La red de aguas residuales atraviesa transversalmente la línea de ferrocarril en el P.K. 89+520.

Se mantendrá la alineación y rasante actuales en el diseño definitivo, aunque la intersección con la losa superior del túnel obliga a rectificar la sección. El colector actual de sección útil 0,80x1,80 m se sustituirá por otro de 1,40x1,00 m.

La capacidad final del colector será de 5,96 m³/s; mayor que el caudal de desagüe actual (5.26 m³/s).

### Aguas pluviales

El colector de pluviales está dispuesto longitudinalmente al trazado del ferrocarril, pasando transversalmente bajo las vías unos 10 m antes de desaguar a la Riera Pahissa (P. K. 89+610).

El colector de aguas pluviales capta las aguas de C/ Germans Lladó desde C/ Santiago Rusinyol. La modificación principal consiste en variar el recorrido haciéndolo pasar por la actual trinchera del ferrocarril y alineado con el mismo junto al paramento lado montaña. En el punto de desagüe en la riera Pahissa, se orientará sensiblemente el eje del mismo, de modo que las aguas viertan en el sentido del cauce. Además, en la sección de desagüe, se vierte con 80 cm de altura, evitando la entrada de las aguas de la riera Pahissa.

La sección será rectangular de 2,50x1,80 m con accesibilidad al personal de mantenimiento. La pendiente será del 0,60% desde la C/ Terrisser hasta la riera Pahissa, provocando un desnivel que evitará flujos de retorno.

Durante la ejecución de las pantallas que forman el cajón para el trazado del ferrocarril, será preciso el desvío provisional de las aguas. Éste se realizará mediante un bypass de las aguas fecales hacia el colector de la C/Joan Maragall, que dará servicio durante la ejecución de las obras. En la fase de cubrición del túnel, se ejecutará la sección definitiva del colector, dándole servicio por su trazado definitivo.

### 3. RIERA PAHISSA

Actualmente, la línea del ferrocarril salva la riera Pahissa cruzándola por encima mediante unas vigas que soportan la infraestructura viaria, flanqueada por ambos lados por un murete o pretil.

El soterramiento del ferrocarril, obliga a modificar la rasante de la riera, para permitir que el túnel pase bajo la misma. Esta nueva rasante de proyecto consta de varios tramos de pendiente constante: el primero parte del entronque del colector EMSA que hay en el cauce aguas arriba hasta la arista del cajón del ferrocarril soterrado que queda aguas abajo (cota 28.60 m) y de longitud 44 m con una pendiente de 0.5%.

Como consecuencia del cambio en la rasante, y la eliminación del cuenco amortiguador, se logra evitar los cambios de regímenes hidráulicos. Con la modificación, se mantiene el régimen rápido en todo el trazado de la riera, lo que supone una mejora cualitativa del comportamiento hidráulico de la riera Pahissa.

La solución queda valorada en el capítulo de estructuras del presupuesto.

### 4. URBANIZACIÓN TORREBLANCA

En esta alternativa, el colector existente de 1,20x1,50 m, no se ve afectado por la ejecución de las obras.

### 3.5. DRENAJE TRANSVERSAL. ALTERNATIVA 1

### 1. COLECTOR DE LA CALLE SANSÓN.

Está prevista la reposición del tramo afectado. En el Anejo noº15, Reposición de Servicios Afectados, se detalla pormenorizadamente su reposición.

### 3.6. DRENAJE TRANSVERSAL. ALTERNATIVA 2

### 1. RIERA DE LA SALUD

Actualmente, la riera de La Salud se encuentra canalizada subterráneamente mediante un colector que presenta tramos diferenciados, según las diferentes secciones y pendientes que se van sucediendo. En su cruce con la infraestructura del ferrocarril que se pretende soterrar, presenta una sección circular hincada de 3,25 m. de diámetro interior y una pendiente del 3,075 %.

En la zona de cruce de la riera de la Salud con el soterramiento del ferrocarril se ha adoptado una sección formada por dos cajones rectangulares de 4,25x2,25 m., cada uno, con pendiente del 1 %. Cada una de estas dos secciones es capaz de llevar, en régimen uniforme, la mitad del caudal de avenida obtenido para el periodo de retorno de 500 años.

En el diseño de las transiciones del colector proyectado a los colectores existentes se han tenido en cuenta las recomendaciones hidráulicas que minimizan los problemas en el flujo, ciñendo los ángulos de los paramentos y desviaciones del eje a valores entre 13º y 15º.

### 2. PASO A NIVEL

En el P. K. 88+897 se halla un colector de 60 cm de diámetro y 17 m de longitud. En el tramo atravesado por el túnel, dicho colector, estará sujeto mediante una estructura rígida apoyada en las pantallas laterales.

Al mantener las condiciones hidráulicas en el diseño final, no se modificará el modo de funcionamiento, ni la capacidad hidráulica del colector.

### 3.7. ANÁLISIS DE RIESGOS

En este apartado se analiza el funcionamiento de los drenajes proyectados con el suficiente grado de detalle que nos permita evaluar el riesgo de inundación de la infraestructura soterrada del ferrocarril.

Para ello, se analiza el comportamiento del agua en casos de avenida extraordinaria (T=500 años) y se localizan los posibles accesos al interior del túnel del ferrocarril.

En los puntos de riesgo analizados (Riera Pahissa Riera de la Salud, salida de emergencia de la estación en el Parque de Can Nadal, edificio de la estación y obra de drenaje transversal en P. K. 90+105), se ha comprobado que con el diseño proyectado y para las actuaciones urbanísticas previstas sobre la traza del ferrocarril, la inundación no es posible.

# COMPROBACIÓN HIDRÁULICA DE MARCOS DE HORMIGÓN EN RÉGIMEN LIBRE

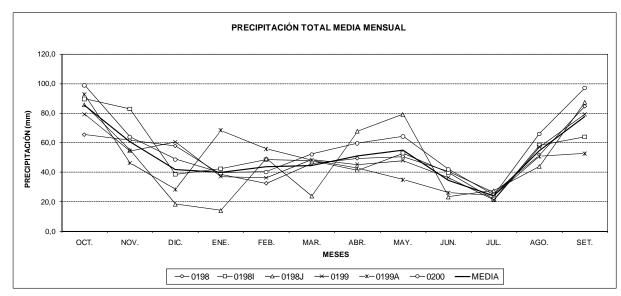
ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT. PERÍODO DE RETORNO CONSIDERADO: T = 500 años.

| OBRA DE DRENAJE               | Q <sub>II</sub> m3/s | N°<br>Conductos | ANCHO | ALTO ( | ALTO CALADO | Sm<br>m² | Pm Rh        | n<br>Manning | j<br>g (/1) | ROUD<br>E | V<br>LLUVIA<br>m/s | Q<br>LLUVIA<br>m3/s |
|-------------------------------|----------------------|-----------------|-------|--------|-------------|----------|--------------|--------------|-------------|-----------|--------------------|---------------------|
| ORRAS DE DRENA JE TRANSVERSAI |                      |                 |       |        |             |          |              |              |             |           |                    |                     |
| Riera de Pahissa              | 105,96               | <del>-</del>    | 10,70 | 7,75   | 1,590       | 17,010   | 13,879 1,22  | _            | _           |           | 6,23               | 105,96              |
| Riera de la Salut             | 106,71               | 7               | 4,25  | 2,25   | 1,038       | 8,821    | 12,651 0,697 | 7 0,013      | 0,0100      | 1,90      | 6,05               | 106,71              |
| Intercuenca Sant Feliu        | 20,14                | _               | 2,50  | 1,80   | 1,686       | 4,216    | 5,873 0,71   | _            |             |           | 4,78               | 20,14               |
| Urbanización Torreblanca      | 23,30                | 7               | 1,65  | 1,50   | 1,078       | 3,557    | 7,611 0,46   | _            |             |           | 3,28               | 23,30               |
|                               |                      |                 |       |        |             |          |              |              |             |           |                    |                     |

| Anejo nº 5. Clim | atología. I | Hidrología v | / Drenaie. |
|------------------|-------------|--------------|------------|
|------------------|-------------|--------------|------------|

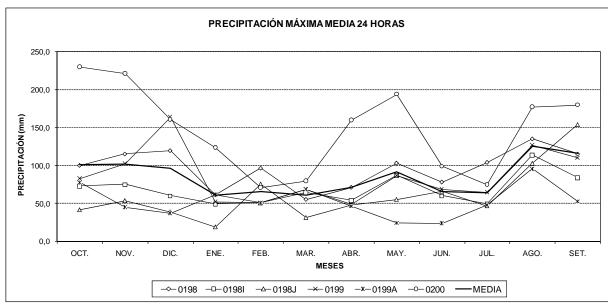
# APÉNDICE 1. DATOS CLIMATOLÓGICOS.

## 0198 SANT BOI DE LLOBREGAT TEMPERATURA MEDIA DEL MES


| AÑO       | OCT. | NOV. | DIC. | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | MEDIA |   |    | 27 |
|-----------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---|----|----|
| 1942-1943 | 19,4 | 11,6 | 8,4  | 9,7  | 9,8  | 12,6 | 16,0 | 19,2 | 22,8 | 24,8 | 24,4 | 23,0 | 16,8  | * | 12 | 1  |
| 1943-1944 | 18,3 | 11,5 | 8,0  | 7,5  | 7,0  | 10,6 | 15,7 | 18,0 | 21,3 | 23,6 | 24,8 | 21,4 | 15,6  | * | 12 | 1  |
| 1944-1945 | 14,7 | 11,8 | 7,6  | 5,4  | 11,0 | 11,7 | 15,5 | 18,0 | 22,2 | 24,7 | 23,0 | 22,6 | 15,7  | * | 12 | 1  |
| 1945-1946 | 18,7 | 12,9 | 9,8  | 7,8  | 11,0 | 12,1 | 15,8 | 18,3 | 20,9 | 25,2 | 24,3 | 22,8 | 16,6  | * | 12 | 1  |
| 1956-1957 | 16,5 | 9,2  | 7,2  | 6,8  | 11,1 | 12,0 | 12,8 | 15,0 | 18,8 | 23,0 | 22,6 | 20,8 | 14,7  | * | 12 | 1  |
| 1957-1958 | 16,0 | 9,6  | 7,4  | 9,0  | 10,8 | 13,5 | 13,4 | 18,5 | 23,0 | 24,8 | 25,6 | 25,1 | 16,4  | * | 12 | 1  |
| 1958-1959 | 20,0 | 15,2 | 13,1 | 10,7 | 11,5 | 14,9 | 17,2 |      | 22,0 | 26,3 | 25,0 | 22,0 | 18,0  | * | 11 | 1  |
| 1960-1961 | 16,6 | 13,7 | 8,4  | 8,6  | 12,5 | 13,4 | 16,4 |      | 22,8 | 25,6 | 24,7 | 23,9 | 17,0  | * | 11 | 1  |
| 1961-1962 | 18,7 | 13,9 | 11,6 | 11,4 | 7,2  | 7,9  | 9,9  | 10,5 | 10,4 | 10,4 | 10,4 | 10,4 | 11,1  | * | 12 | 1  |
| 1962-1963 | 19,4 | 10,8 | 8,0  | 8,2  | 8,4  | 13,6 | 16,4 | 19,0 | 22,2 | 25,7 | 24,2 | 21,6 | 16,5  | * | 12 | 1  |
| 1964-1965 | 17,4 |      | 9,7  | 9,2  | 7,4  | 12,6 | 14,8 | 18,3 | 22,4 | 25,2 | 24,8 | 20,4 | 16,6  | * | 11 | 1  |
| 1965-1966 | 18,9 | 13,8 | 11,7 | 11,6 | 13,4 | 12,4 | 16,4 | 18,4 | 22,4 | 23,8 | 24,4 |      | 17,0  | * | 11 | 1  |
| 1966-1967 | 18,7 | 11,4 | 11,1 | 9,0  | 11,4 | 14,0 | 14,8 | 17,8 | 21,0 | 26,0 |      | 22,6 | 16,2  | * | 11 | 1  |
| 1967-1968 | 20,0 | 14,7 | 8,4  | 10,6 | 11,4 | 12,2 | 15,0 | 17,5 | 20,4 | 24,0 | 23,8 | 22,5 | 16,7  | * | 12 | 1  |
| 1968-1969 | 20,2 | 14,2 | 11,7 | 10,6 | 9,1  | 12,6 |      | 17,8 | 19,7 | 24,0 | 23,8 | 20,8 | 16,8  | * | 11 | 1  |
| 1970-1971 | 17,9 | 15,0 | 8,0  | 9,4  | 10,7 | 9,8  | 15,2 | 17,7 | 20,6 | 25,0 | 25,8 | 22,2 | 16,4  | * | 12 | 1  |
| 1971-1972 | 19,0 | 11,4 | 10,7 | 9,2  | 11,4 | 12,8 | 14,1 | 16,2 | 20,0 | 23,3 | 22,4 | 19,0 | 15,8  | * | 12 | 1  |
| 1972-1973 | 16,8 | 14,8 | 10,5 | 9,4  | 9,4  | 10,6 | 12,8 | 18,0 | 21,4 | 24,6 | 25,0 | 22,2 | 16,3  | * | 12 | 1  |
| 1973-1974 | 16,8 | 12,9 | 9,4  | 10,8 | 10,7 | 12,2 | 13,2 | 17,4 | 21,0 | 23,8 | 24,0 | 20,6 | 16,1  | * | 12 | 1  |
| 1974-1975 | 13,2 | 12,1 | 9,6  | 9,8  |      | 9,8  | 12,8 | 15,6 | 19,6 | 23,9 | 24,3 | 20,4 | 15,6  | * | 11 | 1  |
| 1975-1976 | 16,6 | 12,1 |      | 7,8  | 9,4  | 12,4 | 12,8 | 16,9 | 22,6 | 23,8 | 23,0 | 20,0 | 16,1  | * | 11 | 1  |
| 1976-1977 | 16,0 | 10,7 | 11,2 | 9,4  | 11,6 | 11,1 | 13,1 | 15,1 | 19,1 | 21,6 | 21,6 | 20,6 | 15,1  | * | 12 | 1  |
| 1977-1978 | 18,6 | 13,3 | 11,3 | 8,4  | 11,1 | 13,0 | 12,6 | 16,2 | 19,7 | 22,0 | 23,4 | 22,3 | 16,0  | * | 12 | 1  |
| 1978-1979 | 16,6 | 12,6 | 11,2 | 9,8  | 11,0 | 12,4 | 13,2 | 16,6 | 21,4 | 24,1 | 24,0 | 21,0 | 16,2  | * | 12 | 1  |
| 1979-1980 | 17,9 | 11,8 | 10,4 | 9,0  | 11,2 | 12,4 | 12,8 | 15,8 | 19,6 | 21,5 | 24,4 | 22,4 | 15,8  | * |    | 1  |
| 1980-1981 | 17,4 | 12,2 | 8,2  |      | 8,4  | 14,0 | 14,2 | 16,6 | 21,7 | 22,2 | 23,8 | 22,2 | 16,4  | * | 11 | 1  |
| 1981-1982 | 18,4 | 13,5 | 12,0 | 12,0 | 10,4 | 11,4 | 13,3 | 17,4 | 22,6 | 26,0 | 23,8 | 22,0 | 16,9  | * | 12 | 1  |
|           |      |      |      |      |      |      |      |      |      |      |      |      |       |   |    | 0  |
| MEDIA     | 17,7 | 12,6 | 9,8  | 9,3  | 10,3 | 12,1 | 14,2 | 17,0 | 20,8 | 23,7 | 23,5 | 21,3 | 16,1  |   |    | 0  |
|           |      |      |      |      |      |      |      |      |      |      |      |      |       |   |    | 0  |

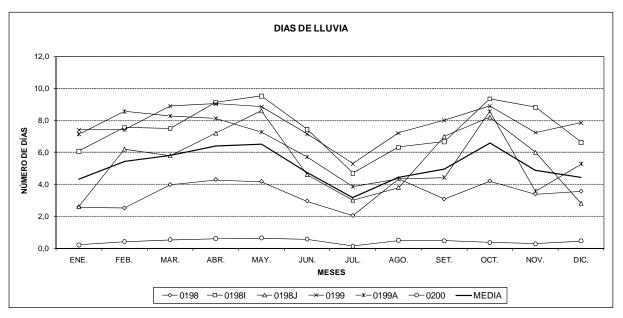
|        |      |      |      |      | LOBRE       |       | MFS  |      |      |      |      |      |        |      | 0 |
|--------|------|------|------|------|-------------|-------|------|------|------|------|------|------|--------|------|---|
|        |      | . –  |      |      | 17 (7(11417 | \ DLL |      |      |      |      |      |      |        |      | 0 |
| AÑO    | ENE. | FEB. | MAR. | ABR. | MAY.        | JUN.  | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | MAXIMA |      | 0 |
| 1942   | 20,0 | 17,0 | 24,0 | 26,0 | 32,0        | 32,0  | 31,0 | 31,0 | 32,0 | 29,0 | 21,0 | 19,0 | 32,0   | * 12 | 1 |
| 1943   | 18,0 | 19,0 | 20,0 | 24,0 | 30,0        | 33,0  | 38,0 | 31,0 | 33,0 | 29,0 | 30,0 | 16,0 | 38,0   | * 12 | 1 |
| 1944   | 19,0 | 16,0 | 26,0 | 27,0 | 27,0        | 30,0  | 32,0 | 33,0 | 31,0 | 23,0 | 22,0 | 16,0 | 33,0   | * 12 | 1 |
| 1945   | 15,0 | 18,0 | 19,0 | 28,0 | 29,0        | 33,0  | 33,0 | 31,0 | 30,0 | 27,0 | 21,0 | 20,0 | 33,0   | * 12 | 1 |
| 1946   | 20,0 | 21,0 | 21,0 | 26,0 | 27,0        | 31,0  | 35,0 | 34,0 | 30,0 | 31,0 | 21,0 | 16,0 | 35,0   | * 12 | 1 |
| 1956   | 18,0 | 19,0 | 20,0 | 21,0 | 29,0        | 27,0  | 31,0 | 32,0 | 34,0 | 27,0 | 18,0 | 15,0 | 34,0   | * 12 | 1 |
| 1957   | 17,0 | 20,0 | 20,0 | 23,0 | 22,0        | 30,0  | 32,0 | 31,0 | 30,0 | 22,0 | 20,0 | 14,0 | 32,0   | * 12 | 1 |
| 1958   | 17,0 | 21,0 | 24,0 | 24,0 | 26,0        | 33,0  | 34,0 | 34,0 | 31,0 | 30,0 | 22,0 | 21,0 | 34,0   | * 12 | 1 |
| 1961   | 17,0 | 23,0 | 22,0 | 27,0 |             | 32,0  | 33,0 | 31,0 | 33,0 | 26,0 | 22,0 | 21,0 | 33,0   | * 11 | 1 |
| 1962   | 19,0 | 15,0 | 19,0 | 18,0 | 20,0        | 20,0  | 20,0 | 20,0 | 20,0 | 27,0 | 21,0 |      | 27,0   | * 12 | 1 |
| 1963   | 17,0 | 19,0 | 22,0 | 26,0 | 29,0        | 34,0  | 34,0 | 33,0 | 29,0 | 29,0 | 29,0 | 21,0 | 34,0   |      |   |
| 1965   | 19,0 | 21,0 | 23,0 | 25,0 | 29,0        | 34,0  | 36,0 | 33,0 | 28,0 | 25,0 | 24,0 | 22,0 | 36,0   | * 12 | 1 |
| 1966   | 22,0 | 24,0 | 22,0 | 28,0 | 27,0        | 31,0  | 34,0 | 32,0 |      | 29,0 | 22,0 | 22,0 | 34,0   |      |   |
| 1967   | 19,0 | 25,0 | 24,0 | 27,0 | 29,0        | 32,0  | 34,0 |      | 30,0 | 29,0 | 24,0 | 19,0 | 04,0   | * 11 |   |
| 1968   | 20,0 | 20,0 | 22,0 | 23,0 | 26,0        | 33,0  | 32,0 | 32,0 | 31,0 | 28,0 | 22,0 | 20,0 | 33,0   |      |   |
| 1969   | 20,0 | 18,0 | 23,0 |      | 26,0        | 29,0  | 34,0 | 31,0 | 28,0 | 26,0 | 23,0 | 21,0 | 34,0   |      |   |
| 1970   | 19,0 | 20,0 | 23,0 | 24,0 | 28,0        | 30,0  |      | 32,0 | 30,0 | 31,0 | 25,0 | 19,0 | 0=,0   | * 11 |   |
| 1971   | 19,0 | 21,0 | 21,0 | 23,0 | 25,0        | 29,0  | 32,0 | 36,0 | 33,0 | 29,0 | 22,0 | 18,0 | 36,0   | * 12 |   |
| 1972   | 17,0 | 20,0 | 22,0 | 24,0 | 27,0        | 28,0  | 31,0 | 30,0 | 28,0 | 24,0 | 23,0 | 17,0 | 0.,0   | * 12 |   |
| 1973   | 18,0 | 19,0 | 23,0 | 22,0 | 27,0        | 30,0  | 33,0 | 33,0 | 30,0 | 25,0 | 22,0 | 17,0 | 00,0   | * 12 |   |
| 1974   | 20,0 | 19,0 | 22,0 | 20,0 | 29,0        | 31,0  | 33,0 | 30,0 | 29,0 | 23,0 | 20,0 | 18,0 | 33,0   |      |   |
| 1975   | 19,0 |      | 19,0 | 24,0 | 24,0        | 28,0  | 31,0 | 32,0 | 27,0 | 25,0 | 22,0 | 16,0 | 32,0   |      |   |
| 1976   | 15,0 | 16,0 | 22,0 | 20,0 | 25,0        | 32,0  | 29,0 | 30,0 | 26,0 | 26,0 | 19,0 | 23,0 | 32,0   |      |   |
| 1977   | 21,0 | 21,0 | 21,0 | 21,0 | 23,0        | 26,0  | 28,0 | 29,0 | 29,0 | 25,0 | 26,0 | 22,0 | 29,0   |      |   |
| 1978   | 19,0 | 24,0 | 23,0 | 22,0 | 23,0        | 29,0  | 31,0 | 30,0 | 30,0 | 24,0 |      | 22,0 | 31,0   |      |   |
| 1979   | 20,0 | 22,0 | 23,0 | 25,0 | 28,0        | 28,0  | 33,0 | 32,0 | 28,0 | 26,0 |      | 23,0 | 33,0   |      |   |
| 1980   | 21,0 | 22,0 | 26,0 | 24,0 | 25,0        | 29,0  | 31,0 | 31,0 | 28,0 | 28,0 |      | 18,0 | 31,0   | * 12 |   |
| 1981   | 19,0 | 18,0 | 26,0 | 21,0 | 25,0        | 34,0  | 29,0 | 32,0 | 29,0 | 31,0 |      | 23,0 | 34,0   | * 12 |   |
| 1982   | 21,0 | 18,0 | 21,0 | 22,0 | 25,0        | 31,0  | 36,0 | 30,0 | 31,0 | 31,0 | 22,0 | 22,0 | 36,0   | * 12 |   |
|        |      | 05.0 |      |      |             |       |      | 00.0 | 040  | 04.0 |      |      |        |      | 0 |
| MAXIMA | 22,0 | 25,0 | 26,0 | 28,0 | 32,0        | 34,0  | 38,0 | 36,0 | 34,0 | 31,0 | 30,0 | 23,0 | 38,0   |      | 0 |
| MEDIA  | 18,8 | 19,9 | 22,2 | 23,8 | 26,5        | 30,3  | 32,1 | 31,3 | 29,6 | 27,1 | 22,4 | 19,3 | 33,1   |      | 0 |
|        |      |      |      |      |             |       |      |      |      |      |      |      |        |      | 0 |
|        |      |      |      |      |             |       |      |      |      |      |      |      |        |      | Ο |

|       |      | TEMP | ERAT | URA N | MIXAN | A MEI | OIA  |      |      |      |      |      |       |     |    | 0 |
|-------|------|------|------|-------|-------|-------|------|------|------|------|------|------|-------|-----|----|---|
| AÑO   | ENE. | FEB. | MAR. | ABR.  | MAY.  | JUN.  | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | MEDIA |     |    | 0 |
| 1943  | 14,3 | 15,1 | 17,0 | 21,0  | 24,4  | 27,8  | 29,9 | 28,4 | 27,8 | 23,2 | 16,2 | 11,9 | 21,4  | * 1 | 12 | 1 |
| 1944  | 13,4 | 12,2 | 16,4 | 21,0  | 23,3  | 26,4  | 28,5 | 29,9 | 26,0 | 19,6 | 16,9 | 11,6 | 20,4  | * 1 | 12 | 1 |
| 1945  | 9,7  | 15,9 | 16,8 | 20,3  | 23,6  | 27,3  | 30,1 | 27,9 | 27,4 | 23,6 | 17,1 | 14,2 | 21,2  | * 1 | 12 | 1 |
| 1946  | 11,8 | 16,6 | 16,5 | 20,5  | 23,0  | 26,3  | 30,8 | 28,7 | 27,6 | 23,0 | 16,3 | 11,0 | 21,0  | * 1 | 12 | 1 |
| 1956  | 12,5 | 9,4  | 17,0 | 18,0  | 22,5  | 23,9  | 28,0 | 25,5 | 25,5 | 20,9 | 13,6 | 11,6 | 19,0  | * 1 | 12 | 1 |
| 1957  | 11,6 | 16,0 | 17,0 | 17,4  | 17,5  | 22,5  | 27,0 | 26,3 | 25,5 | 20,2 | 15,3 | 11,2 | 19,0  | * 1 | 12 | 1 |
| 1958  | 12,7 | 15,0 | 18,0 | 18,2  | 23,0  | 28,5  | 29,6 | 29,8 | 28,7 | 24,5 | 18,2 | 16,1 | 21,9  | * 1 | 12 | 1 |
| 1961  | 12,6 | 18,1 | 18,9 | 21,6  |       | 27,3  | 29,8 | 28,7 | 28,6 | 23,1 | 17,9 | 15,3 | 22,0  | * 1 | 11 | 1 |
| 1962  | 14,9 | 11,0 | 11,0 | 13,6  | 14,7  | 14,7  | 14,7 | 14,7 | 14,7 | 23,0 | 15,0 | 11,9 | 14,5  | * 1 | 12 | 1 |
| 1963  | 11,8 | 12,6 | 18,3 | 21,3  | 24,1  | 26,7  | 30,4 | 28,3 | 25,9 | 25,9 | 25,9 | 12,8 | 22,0  | * 1 | 12 | 1 |
| 1965  | 13,7 | 12,5 | 17,6 | 19,9  | 23,5  | 27,4  | 29,7 | 29,6 | 25,4 | 22,4 | 18,2 | 16,0 | 21,3  | * 1 | 12 | 1 |
| 1966  | 16,0 | 17,4 | 17,7 | 21,3  | 23,2  | 27,2  | 28,2 | 28,7 |      | 23,5 | 16,3 | 15,8 | 21,4  | * 1 | 11 | 1 |
| 1967  | 13,9 | 15,8 | 18,8 | 20,0  | 22,7  | 26,0  | 31,2 |      | 27,0 | 24,5 | 18,7 | 12,4 | 21,0  | * 1 | 11 | 1 |
| 1968  | 15,6 | 16,1 | 16,4 | 18,6  | 21,2  | 24,3  | 27,4 | 27,2 | 26,7 | 24,8 | 17,8 | 15,3 | 21,0  | * 1 | 12 | 1 |
| 1969  | 13,5 | 13,7 | 15,9 |       | 21,8  | 23,4  | 28,3 | 27,6 | 25,1 | 22,9 | 17,7 | 12,6 | 20,2  | * 1 | 11 | 1 |
| 1970  | 15,3 | 15,9 | 14,6 | 17,7  | 21,6  | 26,5  |      | 27,9 | 27,3 | 23,1 | 19,5 | 11,9 | 20,1  | * 1 | 11 | 1 |
| 1971  | 13,4 | 15,6 | 14,1 | 19,0  | 21,0  | 24,6  | 29,0 | 29,4 | 25,8 | 23,3 | 15,7 | 14,1 | 20,4  | * 1 | 12 | 1 |
| 1972  | 13,1 | 15,2 | 16,8 | 18,1  | 20,1  | 23,4  | 27,2 | 26,2 | 22,4 | 20,5 | 18,7 | 14,4 | 19,7  | * 1 | 12 | 1 |
| 1973  | 13,6 | 14,4 | 15,2 | 16,7  | 21,8  | 25,5  | 28,4 | 28,7 | 26,3 | 21,1 | 17,4 | 13,4 | 20,2  | * 1 | 12 | 1 |
| 1974  | 15,4 | 14,6 | 15,6 | 16,3  | 21,1  | 24,7  | 27,7 | 27,7 | 24,6 | 17,3 | 16,4 | 13,9 | 19,6  | * 1 | 12 | 1 |
| 1975  | 14,3 |      | 13,3 | 17,4  | 18,9  | 22,6  | 27,4 | 27,8 | 24,0 | 20,5 | 16,5 | 12,3 | 19,5  | * 1 | 11 | 1 |
| 1976  | 12,5 | 13,3 | 16,4 | 16,2  | 20,3  | 26,9  | 27,2 | 26,5 | 23,7 | 19,8 | 15,9 | 14,4 | 19,4  | * 1 | 12 | 1 |
| 1977  | 12,6 | 16,2 | 15,8 | 16,6  | 18,4  | 22,6  | 25,1 | 25,3 | 24,2 | 22,7 | 19,0 | 15,7 | 19,5  | * 1 | 12 | 1 |
| 1978  | 13,1 | 15,9 | 17,8 | 16,7  | 20,3  | 23,8  | 26,3 | 27,4 | 26,6 | 21,3 | 17,8 | 15,6 | 20,2  | * 1 | 12 | 1 |
| 1979  | 13,6 | 15,6 | 17,0 | 17,9  | 20,8  | 25,2  | 28,4 | 28,4 | 25,3 | 22,2 | 17,4 | 15,7 | 20,6  | * 1 | 12 | 1 |
| 1980  | 13,5 | 15,8 | 17,4 | 17,0  | 20,2  | 23,2  | 25,5 | 28,4 | 26,5 | 22,9 | 16,8 | 13,6 | 20,1  | * 1 | 12 | 1 |
| 1981  | 13,8 | 13,6 | 18,8 | 17,9  | 21,4  | 25,5  | 26,2 | 28,2 | 26,6 | 23,3 | 18,7 | 16,6 | 20,9  | * 1 | 12 | 1 |
| 1982  | 16,4 | 14,4 | 15,9 | 17,6  | 21,7  | 26,3  | 30,0 | 27,8 | 26,5 | 22,4 | 17,9 | 15,3 | 21,0  | * 1 | 12 | 1 |
|       |      |      |      |       |       |       |      |      |      |      |      |      |       |     |    | 0 |
| MEDIA | 13,5 | 14,7 | 16,5 | 18,4  | 21,3  | 25,0  | 27,9 | 27,4 | 25,6 | 22,3 | 17,5 | 13,8 | 20,3  |     |    | 0 |
|       |      |      |      |       |       |       |      |      |      |      |      |      |       |     |    | 0 |


| Anejo nº 5. Climatología, Hidrología y | V | ' Drenaje |
|----------------------------------------|---|-----------|
|----------------------------------------|---|-----------|

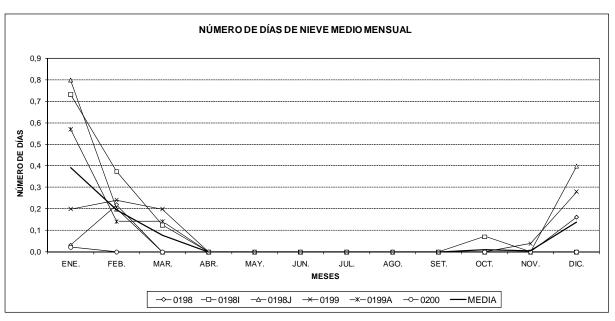
# APÉNDICE 2. GRAFICOS CLIMATOLOGICOS.




### PRECIPITACIÓN TOTAL

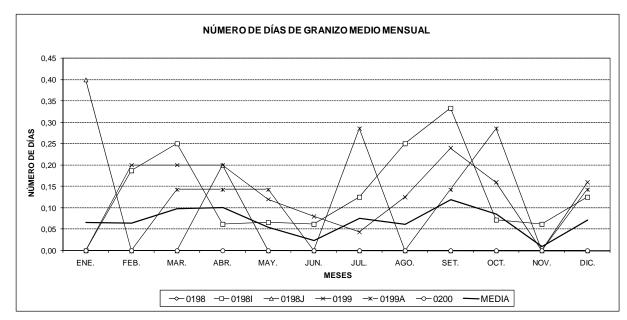
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      |       | TOTAL |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|
|       |                                     | OCT. | NOV. | DIC. | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | MEDIA | ANUAL |
| 0198  | SANT BOI DE LLOBREGAT               | 65,4 | 61,5 | 57,7 | 38,3 | 32,3 | 45,9 | 49,3 | 50,4 | 40,3 | 26,1 | 51,6 | 84,6 | 50,3  | 603,3 |
| 01981 | ESPLUGUES DE LLOBREGAT              | 89,7 | 82,9 | 38,5 | 42,3 | 48,6 | 47,6 | 41,3 | 53,0 | 39,7 | 21,6 | 58,3 | 64,0 | 52,3  | 627,4 |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 85,7 | 54,8 | 18,2 | 13,9 | 49,2 | 23,7 | 67,8 | 79,1 | 23,1 | 27,4 | 43,8 | 87,4 | 47,8  | 574,0 |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 79,1 | 54,4 | 60,4 | 37,0 | 36,1 | 48,6 | 45,1 | 47,9 | 36,3 | 21,2 | 57,1 | 79,3 | 50,2  | 602,5 |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 92,5 | 46,2 | 28,3 | 68,2 | 55,6 | 48,0 | 42,6 | 34,7 | 26,1 | 24,0 | 50,5 | 52,6 | 47,4  | 569,4 |
| 0200  | CORNELLÁ DE LLOBREGAT               | 99,0 | 63,8 | 48,6 | 39,3 | 40,1 | 52,1 | 59,5 | 64,1 | 41,8 | 24,4 | 66,0 | 97,1 | 58,0  | 695,9 |
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| MEDIA |                                     | 85,2 | 60,6 | 42,0 | 39,8 | 43,6 | 44,3 | 50,9 | 54,9 | 34,5 | 24,1 | 54,6 | 77,5 | 51,0  | 612,1 |




### PRECIPITACIÓN MÁXIMA EN UN DIA

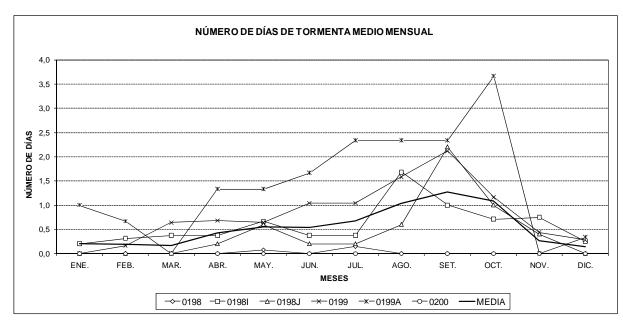
|       |                                     |       |       |       |       |      |      |       |       |      |       |       |       | MEDIA |
|-------|-------------------------------------|-------|-------|-------|-------|------|------|-------|-------|------|-------|-------|-------|-------|
|       |                                     | OCT.  | NOV.  | DIC.  | ENE.  | FEB. | MAR. | ABR.  | MAY.  | JUN. | JUL.  | AGO.  | SET.  | ANUAL |
| 0198  | SANT BOI DE LLOBREGAT               | 100,0 | 115,0 | 119,5 | 61,0  | 96,3 | 55,0 | 71,0  | 103,0 | 78,0 | 104,0 | 135,0 | 115,0 | 96,1  |
| 0198I | ESPLUGUES DE LLOBREGAT              | 73,0  | 75,0  | 60,0  | 49,5  | 50,6 | 64,4 | 54,0  | 87,0  | 60,0 | 49,3  | 113,8 | 84,0  | 68,4  |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 41,5  | 53,6  | 38,8  | 18,9  | 75,4 | 31,3 | 48,1  | 55,1  | 66,0 | 46,7  | 102,8 | 153,8 | 61,0  |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 82,7  | 102,4 | 163,8 | 52,4  | 51,0 | 68,8 | 49,0  | 86,7  | 68,8 | 64,8  | 126,8 | 110,0 | 85,6  |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 77,5  | 45,1  | 37,5  | 61,7  | 51,0 | 68,8 | 46,4  | 24,4  | 24,0 | 48,0  | 95,7  | 52,7  | 52,7  |
| 0200  | CORNELLÁ DE LLOBREGAT               | 230,0 | 221,0 | 160,5 | 124,0 | 71,0 | 80,0 | 160,0 | 194,0 | 99,0 | 75,0  | 177,0 | 180,0 | 147,6 |
| MEDIA |                                     | 100.8 | 102.0 | 96.7  | 61.3  | 65.9 | 61.4 | 71.4  | 91.7  | 66.0 | 64.6  | 125.2 | 115.9 | 85.2  |




### DIAS DE LLUVIA

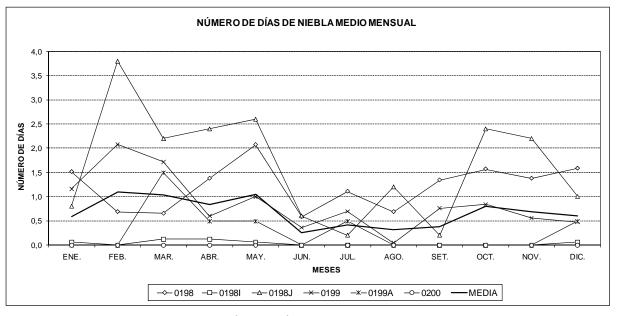
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      | TOTAL |  |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--|
|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |  |
| 0198  | SANT BOI DE LLOBREGAT               | 2,6  | 2,5  | 4,0  | 4,3  | 4,2  | 2,9  | 2,0  | 4,3  | 3,1  | 4,2  | 3,4  | 3,5  | 41,0  |  |
| 0198I | ESPLUGUES DE LLOBREGAT              | 6,1  | 7,6  | 7,5  | 9,1  | 9,5  | 7,4  | 4,7  | 6,3  | 6,7  | 9,4  | 8,8  | 6,6  | 89,7  |  |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 2,6  | 6,2  | 5,8  | 7,2  | 8,6  | 4,6  | 3,0  | 3,8  | 7,0  | 8,2  | 6,0  | 2,8  | 65,8  |  |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 7,4  | 7,4  | 8,9  | 9,0  | 8,8  | 7,2  | 5,3  | 7,2  | 8,0  | 8,9  | 7,2  | 7,8  | 93,2  |  |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 7,1  | 8,6  | 8,3  | 8,1  | 7,3  | 5,7  | 3,9  | 4,3  | 4,4  | 8,6  | 3,6  | 5,3  | 75,2  |  |
| 0200  | CORNELLÁ DE LLOBREGAT               | 0,2  | 0,4  | 0,5  | 0,6  | 0,6  | 0,6  | 0,1  | 0,5  | 0,5  | 0,3  | 0,3  | 0,4  | 5,1   |  |
| MEDIA |                                     | 4,3  | 5,4  | 5,8  | 6,4  | 6,5  | 4,7  | 3,2  | 4,4  | 4,9  | 6,6  | 4,9  | 4,4  | 61,6  |  |




### NÚMERO DE DÍAS DE NIEVE MENSUAL. VALORES MEDIOS

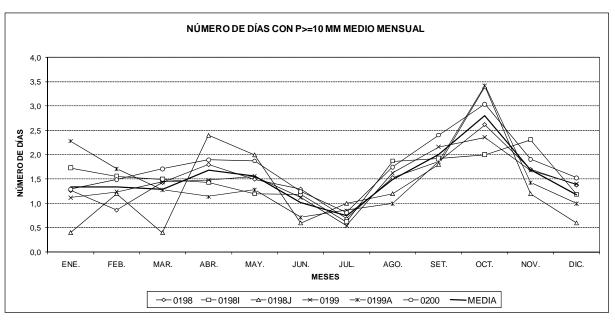
|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 0198  | SANT BOI DE LLOBREGAT               | 0,0  | 0,2  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,2  | 0,4   |
| 0198I | ESPLUGUES DE LLOBREGAT              | 0,7  | 0,4  | 0,1  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,1  | 0,0  | 0,0  | 1,3   |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 0,8  | 0,2  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,4  | 1,4   |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 0,2  | 0,2  | 0,2  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,3  | 1,0   |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 0,6  | 0,1  | 0,1  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,9   |
| 0200  | CORNELLÁ DE LLOBREGAT               | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0   |
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      |       |
| MEDIA |                                     | 0,4  | 0,2  | 0,1  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,1  | 0,8   |
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      |       |




### NÚMERO DE DÍAS DE GRANIZO MENSUAL. VALORES MEDIOS

|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      | TOTAL |  |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--|
|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |  |
| 0198  | SANT BOI DE LLOBREGAT               | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00  |  |
| 0198I | ESPLUGUES DE LLOBREGAT              | 0,00 | 0,19 | 0,25 | 0,06 | 0,07 | 0,06 | 0,13 | 0,25 | 0,33 | 0,07 | 0,06 | 0,13 | 0,13  |  |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 0,40 | 0,00 | 0,00 | 0,20 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,05  |  |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 0,00 | 0,20 | 0,20 | 0,20 | 0,12 | 0,08 | 0,04 | 0,13 | 0,24 | 0,16 | 0,00 | 0,16 | 0,13  |  |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 0,00 | 0,00 | 0,14 | 0,14 | 0,14 | 0,00 | 0,29 | 0,00 | 0,14 | 0,29 | 0,00 | 0,14 | 0,11  |  |
| 0200  | CORNELLÁ DE LLOBREGAT               | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00  |  |
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      |       |  |
| MEDIA |                                     | 0.07 | 0.06 | 0.10 | 0.10 | 0.05 | 0.02 | 0.08 | 0.06 | 0.12 | 0.09 | 0.01 | 0.07 | 0.07  |  |

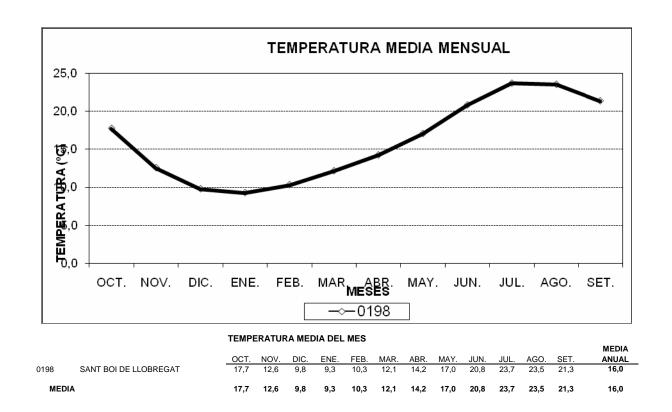


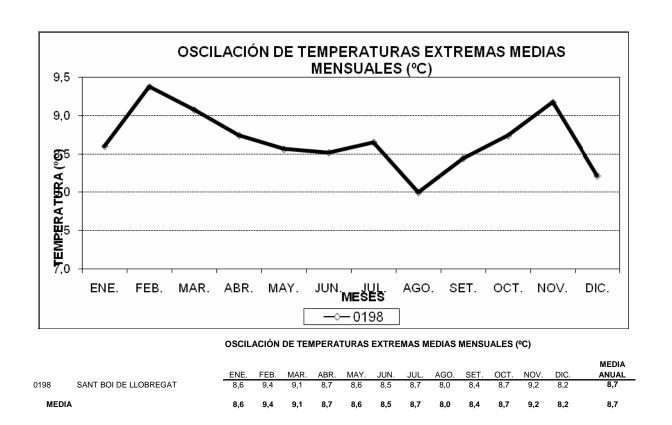

### NÚMERO DE DÍAS DE TORMENTA MENSUAL. VALORES MEDIOS

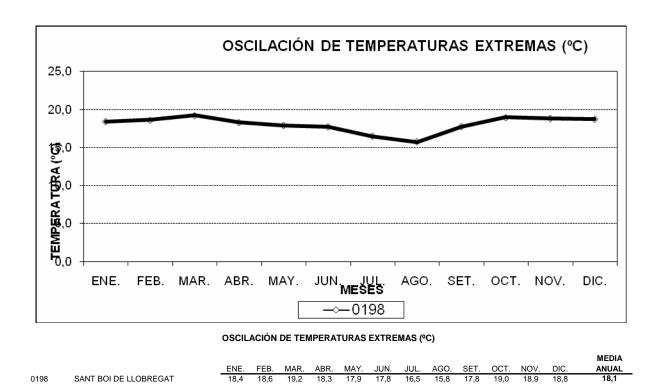
|       |                                     |      |      |      |      |      |      |      |      |      |      |      |      | TOTAL |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |
| 0198  | SANT BOI DE LLOBREGAT               | 0,0  | 0,0  | 0,0  | 0,0  | 0,1  | 0,0  | 0,1  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,2   |
| 01981 | ESPLUGUES DE LLOBREGAT              | 0,2  | 0,3  | 0,4  | 0,4  | 0,7  | 0,4  | 0,4  | 1,7  | 1,0  | 0,7  | 0,8  | 0,3  | 7,1   |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 0,0  | 0,0  | 0,0  | 0,2  | 0,6  | 0,2  | 0,2  | 0,6  | 2,2  | 1,0  | 0,4  | 0,0  | 5,4   |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 0,0  | 0,2  | 0,6  | 0,7  | 0,6  | 1,0  | 1,0  | 1,6  | 2,1  | 1,2  | 0,4  | 0,3  | 9,8   |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 1,0  | 0,7  | 0,0  | 1,3  | 1,3  | 1,7  | 2,3  | 2,3  | 2,3  | 3,7  | 0,0  | 0,3  | 17,0  |
| 0200  | CORNELLÁ DE LLOBREGAT               | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0   |
| MEDIA |                                     | 0,2  | 0,2  | 0,2  | 0,4  | 0,6  | 0,5  | 0,7  | 1,0  | 1,3  | 1,1  | 0,3  | 0,1  | 6,6   |



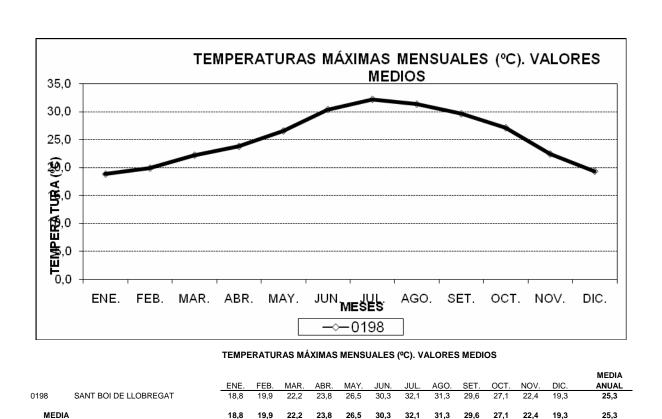
### NÚMERO DE DÍAS DE NIEBLA MENSUALES. VALORES MEDIOS


|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | TOTAL<br>ANUAL |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|----------------|
| 0198  | SANT BOI DE LLOBREGAT               | 1,5  | 0,7  | 0,7  | 1,4  | 2,1  | 0,6  | 1,1  | 0,7  | 1,3  | 1,6  | 1,4  | 1,6  | 14,6           |
| 01981 | ESPLUGUES DE LLOBREGAT              | 0,1  | 0,0  | 0,1  | 0,1  | 0,1  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,1  | 0,4            |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 0,8  | 3,8  | 2,2  | 2,4  | 2,6  | 0,6  | 0,2  | 1,2  | 0,2  | 2,4  | 2,2  | 1,0  | 19,6           |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 1,2  | 2,1  | 1,7  | 0,6  | 1,0  | 0,4  | 0,7  | 0,0  | 0,8  | 0,8  | 0,6  | 0,5  | 10,3           |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 0,0  | 0,0  | 1,5  | 0,5  | 0,5  | 0,0  | 0,5  | 0,0  | 0,0  | 0,0  | 0,0  | 0,5  | 3,5            |
| 0200  | CORNELLÁ DE LLOBREGAT               | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0            |
| MEDIA |                                     | 0.6  | 1.1  | 1.0  | 0.8  | 1.0  | 0.3  | 0.4  | 0.3  | 0.4  | 0.8  | 0.7  | 0.6  | 8.1            |

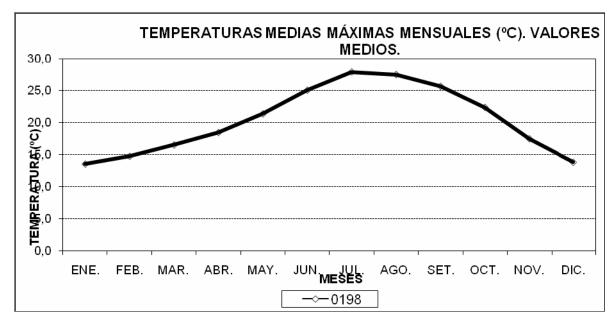




### NÚMERO DE DÍAS MENSUALES CON PRECIPITACIÓN >= 10. VALORES MEDIOS

|       |                                     | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |  |
|-------|-------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--|
| 0198  | SANT BOI DE LLOBREGAT               | 1,3  | 0,9  | 1,4  | 1,8  | 1,5  | 1,3  | 0,7  | 1,5  | 1,9  | 2,6  | 1,7  | 1,4  | 18,0  |  |
| 0198I | ESPLUGUES DE LLOBREGAT              | 1,7  | 1,6  | 1,5  | 1,4  | 1,2  | 1,2  | 0,6  | 1,9  | 1,9  | 2,0  | 2,3  | 1,2  | 18,6  |  |
| 0198J | ESPLUGUES DE LL. "FINESTRELLES"     | 0,4  | 1,2  | 0,4  | 2,4  | 2,0  | 0,6  | 1,0  | 1,2  | 1,8  | 3,4  | 1,2  | 0,6  | 16,2  |  |
| 0199  | L' HOSPITALET DE LLOBREGAT          | 1,1  | 1,2  | 1,4  | 1,5  | 1,6  | 1,1  | 0,5  | 1,6  | 2,2  | 2,4  | 1,7  | 1,4  | 17,7  |  |
| 0199A | L' HOSPITALET DE LL. "AYUNTAMIENTO" | 2,3  | 1,7  | 1,3  | 1,1  | 1,3  | 0,7  | 0,9  | 1,0  | 1,9  | 3,4  | 1,4  | 1,0  | 18,0  |  |
| 0200  | CORNELLÁ DE LLOBREGAT               | 1,3  | 1,5  | 1,7  | 1,9  | 1,9  | 1,2  | 8,0  | 1,8  | 2,4  | 3,0  | 1,9  | 1,5  | 21,0  |  |
| MEDIA |                                     | 1.3  | 1.3  | 1.3  | 1.7  | 1.6  | 1.0  | 0.8  | 1.5  | 2.0  | 2.8  | 1.7  | 1.2  | 18.2  |  |

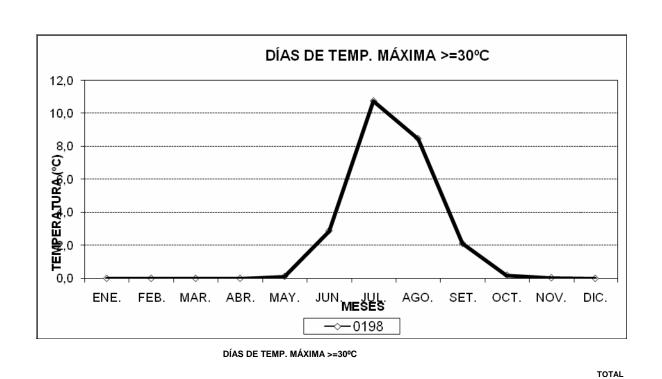

18,4 18,6 19,2 18,3 17,9 17,8 16,5 15,8 17,8 19,0 18,9 18,8





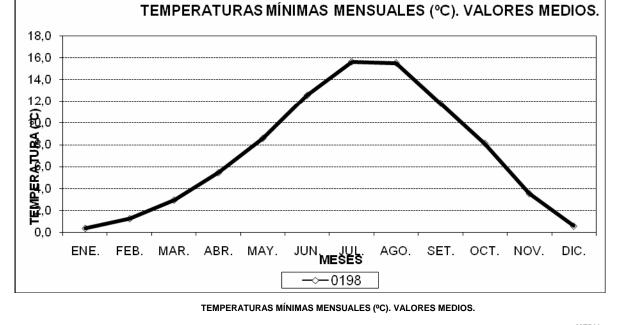


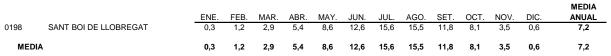

MEDIA

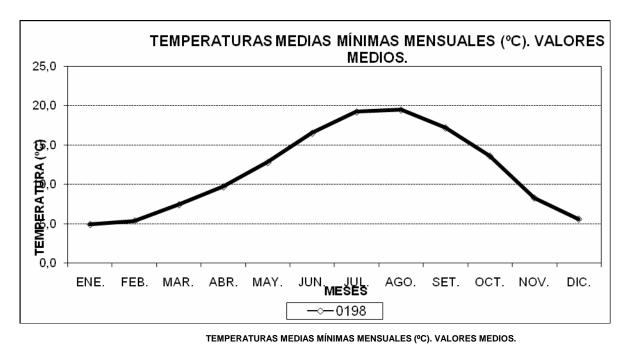



18,1







|       |                       |      |      |      |      |      |      |      |      |      |      |      |      | MEDIA |
|-------|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|       |                       | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |
| 0198  | SANT BOI DE LLOBREGAT | 13,5 | 14,7 | 16,5 | 18,4 | 21,3 | 25,0 | 27,9 | 27,4 | 25,6 | 22,3 | 17,5 | 13,8 | 20,3  |
| MEDIA | 1                     | 13,5 | 14,7 | 16,5 | 18,4 | 21,3 | 25,0 | 27,9 | 27,4 | 25,6 | 22,3 | 17,5 | 13,8 | 20,3  |



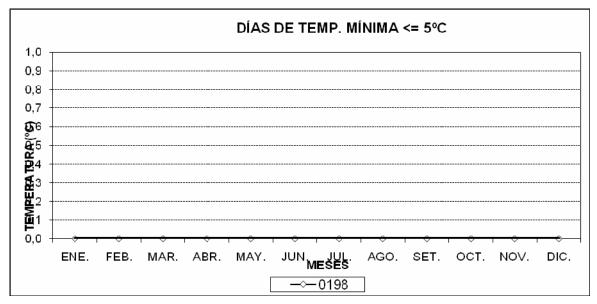

SANT BOI DE LLOBREGAT

MEDIA



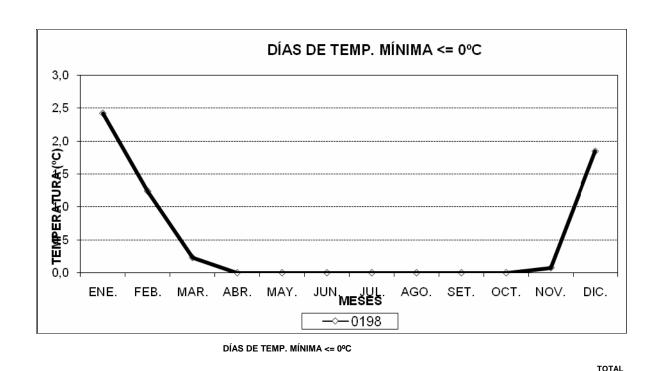





MEDIA
0198 SANT BOI DE LLOBREGAT

4,9 5,4 7,4 9,7 12,8 16,5 19,2 19,4 17,2 13,6 8,3 5,6 11,7

MEDIA


4,9 5,4 7,4 9,7 12,8 16,5 19,2 19,4 17,2 13,6 8,3 5,6 11,7

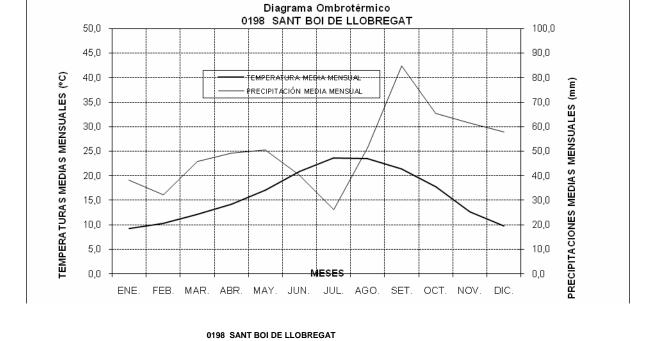
24.6



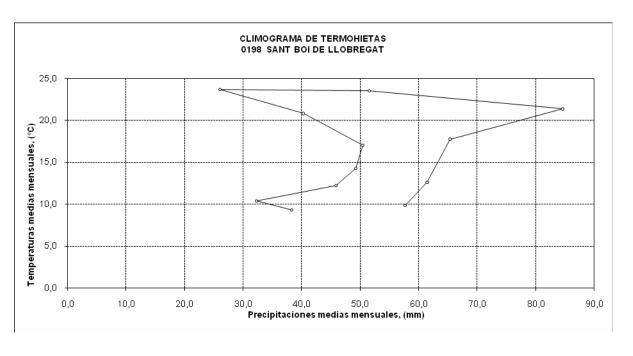


|       |                       |      |      |      |      |      |      |      |      |      |      |      |      | TOTAL |
|-------|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|       |                       | ENE. | FEB. | MAR. | ABR. | MAY. | JUN. | JUL. | AGO. | SET. | OCT. | NOV. | DIC. | ANUAL |
| 0198  | SANT BOI DE LLOBREGAT | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0   |
| MEDI/ |                       | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0  | 0,0   |




SANT BOI DE LLOBREGAT

MEDIA


 ENE.
 FEB.
 MAR.
 ABR.
 MAY.
 JUN.
 JUL.
 AGO.
 SET.
 OCT.
 NOV.

 2,4
 1,2
 0,2
 0,0
 0,0
 0,0
 0,0
 0,0
 0,0
 0,1

2,4 1,2 0,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,8



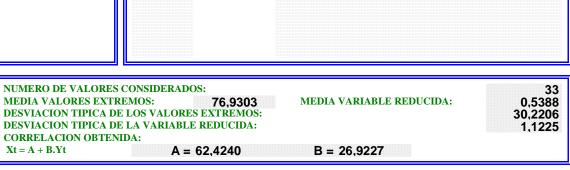
## ENE. FEB. MAR. ABR. MAY. JUN. JUL. AGO. SET. OCT. NOV. DIC. TEMPERATURA MEDIA MENSUAL 9,3 10,3 12,1 14,2 17,0 20,8 23,7 23,5 21,3 17,7 12,6 9,8 PRECIPITACIÓN MEDIA MENSUAL 38,3 32,3 45,9 49,3 50,4 40,3 26,1 51,6 84,6 65,4 61,5 57,7

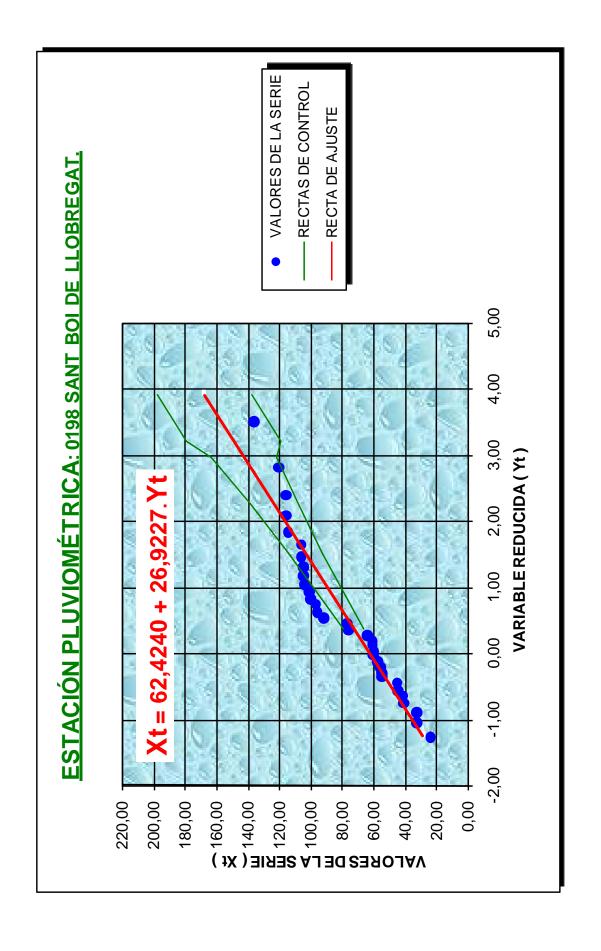


### 0198 SANT BOI DE LLOBREGAT

|                             | GEN. | FEB. | MAR. | ABR. | MAIG | JUNY | JUL. | AGO. | SET. | OCT. | NOV. | DES. |
|-----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| TEMPERATURA MEDIA MENSUAL   | 9,3  | 10,3 | 12,1 | 14,2 | 17,0 | 20,8 | 23,7 | 23,5 | 21,3 | 17,7 | 12,6 | 9,8  |
| PRECIPITACIÓN MEDIA MENSUAL | 38,3 | 32,3 | 45,9 | 49,3 | 50,4 | 40,3 | 26,1 | 51,6 | 84,6 | 65,4 | 61,5 | 57,7 |

5,8


| Anejo nº 5. Climatología, Hidrología y Drenaje. |
|-------------------------------------------------|
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |


# APÉNDICE 3. HOJAS DE CÁLCULO DE PLUVIOMETRÍA.

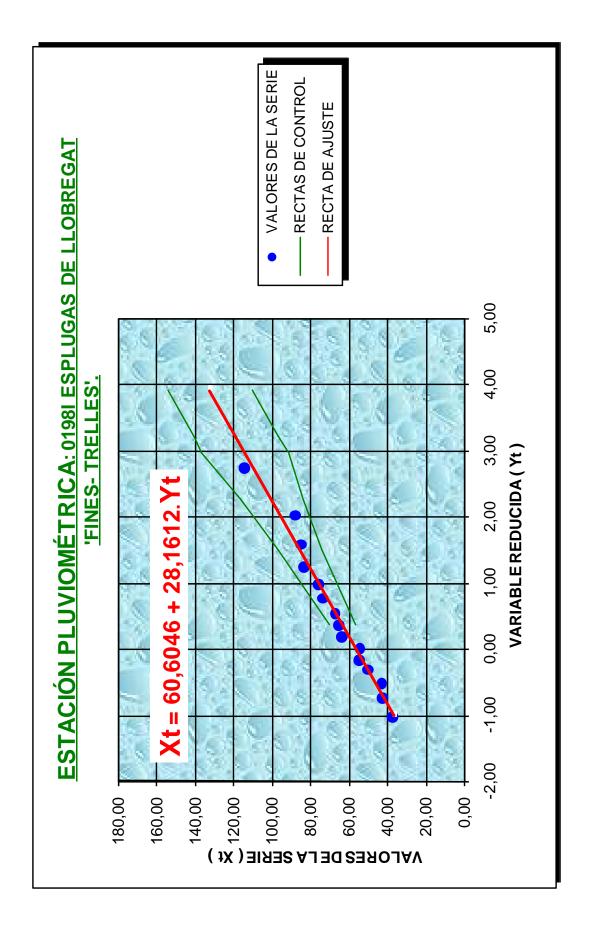
ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (0198) SANT BOI DE LLOBREGAT. Longitud: 2º 02' (W) Latitud: 4. Altitud: 27 m. Latitud: 41° 20′

| 41,30<br>31,70<br>59,40<br>63,30<br>114,50<br>40,00<br>99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 24,00<br>31,70<br>32,00<br>40,00<br>41,30<br>44,00<br>54,00<br>54,00<br>55,00<br>57,00<br>60,00<br>61,00<br>61,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00 | 2801,62<br>2045,78<br>2018,73<br>1363,85<br>1269,52<br>1084,40<br>1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65<br>402,79 | 2,94<br>5,88<br>8,82<br>11,76<br>14,71<br>17,65<br>20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82<br>61,76                                         | -1,26<br>-1,04<br>-0,89<br>-0,76<br>-0,65<br>-0,55<br>-0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63<br>0,73                                       | 3,24<br>2,50<br>2,03<br>1,69<br>1,41<br>1,19<br>0,99<br>0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,07<br>0,03<br>0,01<br>0,00 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59,40<br>63,30<br>114,50<br>40,00<br>99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                   | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22           | 32,00<br>40,00<br>41,30<br>44,00<br>45,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                            | 2018,73<br>1363,85<br>1269,52<br>1084,40<br>1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                 | 8,82<br>11,76<br>14,71<br>17,65<br>20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                  | -0,89<br>-0,76<br>-0,65<br>-0,55<br>-0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                         | 2,03<br>1,69<br>1,41<br>1,19<br>0,99<br>0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                 |
| 63,30<br>114,50<br>40,00<br>99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                            | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                      | 40,00<br>41,30<br>44,00<br>45,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                     | 1363,85<br>1269,52<br>1084,40<br>1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                            | 11,76<br>14,71<br>17,65<br>20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                          | -0,76<br>-0,65<br>-0,55<br>-0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                  | 1,69 1,41 1,19 0,99 0,82 0,68 0,55 0,44 0,34 0,25 0,18 0,11 0,07 0,03 0,01 0,00 0,01                                                                         |
| 114,50<br>40,00<br>99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                     | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                           | 41,30<br>44,00<br>45,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                              | 1269,52<br>1084,40<br>1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                       | 14,71<br>17,65<br>20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                   | -0,65<br>-0,55<br>-0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                           | 1,41<br>1,19<br>0,99<br>0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00                                         |
| 40,00<br>99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                               | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                          | 44,00<br>45,00<br>54,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                              | 1084,40<br>1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                  | 17,65<br>20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                            | -0,55<br>-0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                    | 1,19<br>0,99<br>0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                         |
| 99,00<br>75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                        | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                     | 45,00<br>54,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                       | 1019,54<br>525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                             | 20,59<br>23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                     | -0,46<br>-0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                             | 0,99 0,82 0,68 0,55 0,44 0,34 0,25 0,18 0,11 0,07 0,03 0,01 0,00 0,01                                                                                        |
| 75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                 | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                          | 54,00<br>54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                | 525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                        | 23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                              | -0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                      | 0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00                                                                 |
| 75,00<br>119,50<br>54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                 | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                               | 54,00<br>55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                         | 525,80<br>525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                        | 23,53<br>26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                              | -0,37<br>-0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                      | 0,82<br>0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00                                                                 |
| 54,00<br>61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                    | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                    | 55,00<br>57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                  | 525,80<br>480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                  | 26,47<br>29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                       | -0,28<br>-0,20<br>-0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                               | 0,68<br>0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                 |
| 61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                             | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                          | 57,00<br>59,40<br>60,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                           | 480,94<br>397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                            | 29,41<br>32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                | -0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54                                                                                                                                                         | 0,55<br>0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                         |
| 61,00<br>115,00<br>91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                             | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                          | 59,40<br>60,00<br>61,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                           | 397,22<br>307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                      | 32,35<br>35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                         | -0,12<br>-0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54                                                                                                                                                         | 0,44<br>0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                 |
| 91,00<br>57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                                      | 59,40<br>60,00<br>61,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                           | 307,31<br>286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                                | 35,29<br>38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                  | -0,04<br>0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                          | 0,34<br>0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                         |
| 57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                         | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                                            | 61,00<br>61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                                             | 286,64<br>253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                                          | 38,24<br>41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                           | 0,04<br>0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                                   | 0,25<br>0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                                 |
| 57,00<br>104,00<br>24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                         | 15<br>16<br>17<br>18<br>19<br>20<br>21                                                                                  | 61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                                                      | 253,77<br>253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                                                    | 41,18<br>44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                                    | 0,12<br>0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                                           | 0,18<br>0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                                         |
| 24,00<br>104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                            | 15<br>16<br>17<br>18<br>19<br>20<br>21                                                                                  | 61,00<br>63,30<br>75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                                                      | 253,77<br>185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                                                              | 44,12<br>47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                                             | 0,20<br>0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                                                   | 0,11<br>0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                                                 |
| 104,00<br>32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                     | 16<br>17<br>18<br>19<br>20<br>21                                                                                        | 75,00<br>76,00<br>91,00<br>96,00<br>97,00                                                                                                                                        | 185,79<br>3,73<br>0,87<br>197,96<br>363,65                                                                                                                                                                        | 47,06<br>50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                                                      | 0,28<br>0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                                                           | 0,07<br>0,03<br>0,01<br>0,00<br>0,01                                                                                                                         |
| 32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                               | 17<br>18<br>19<br>20<br>21<br>22                                                                                        | 76,00<br>91,00<br>96,00<br>97,00                                                                                                                                                 | 3,73<br>0,87<br>197,96<br>363,65                                                                                                                                                                                  | 50,00<br>52,94<br>55,88<br>58,82                                                                                                                                                                                               | 0,37<br>0,45<br>0,54<br>0,63                                                                                                                                                                                                   | 0,03<br>0,01<br>0,00<br>0,01                                                                                                                                 |
| 32,00<br>45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                               | 18<br>19<br>20<br>21<br>22                                                                                              | 76,00<br>91,00<br>96,00<br>97,00                                                                                                                                                 | 0,87<br>197,96<br>363,65                                                                                                                                                                                          | 52,94<br>55,88<br>58,82                                                                                                                                                                                                        | 0,45<br>0,54<br>0,63                                                                                                                                                                                                           | 0,01<br>0,00<br>0,01                                                                                                                                         |
| 45,00<br>106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                                        | 19<br>20<br>21<br>22                                                                                                    | 91,00<br>96,00<br>97,00                                                                                                                                                          | 197,96<br>363,65                                                                                                                                                                                                  | 55,88<br>58,82                                                                                                                                                                                                                 | 0,54<br>0,63                                                                                                                                                                                                                   | 0,00<br>0,01                                                                                                                                                 |
| 106,00<br>61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                                                 | 20<br>21<br>22                                                                                                          | 96,00<br>97,00                                                                                                                                                                   | 363,65                                                                                                                                                                                                            | 58,82                                                                                                                                                                                                                          | 0,63                                                                                                                                                                                                                           | 0,01                                                                                                                                                         |
| 61,00<br>96,00<br>97,00<br>60,00                                                                                                                                                                                           | 21<br>22                                                                                                                | 97,00                                                                                                                                                                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                              |
| 96,00<br>97,00<br>60,00                                                                                                                                                                                                    | 22                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                              |
| 97,00<br>60,00                                                                                                                                                                                                             |                                                                                                                         |                                                                                                                                                                                  | 487,07                                                                                                                                                                                                            | 64,71                                                                                                                                                                                                                          | 0,83                                                                                                                                                                                                                           | 0,09                                                                                                                                                         |
| 60,00                                                                                                                                                                                                                      | 23                                                                                                                      | 100,00                                                                                                                                                                           | 532,21                                                                                                                                                                                                            | 67,65                                                                                                                                                                                                                          | 0,94                                                                                                                                                                                                                           | 0,16                                                                                                                                                         |
|                                                                                                                                                                                                                            | 24                                                                                                                      | 103,00                                                                                                                                                                           | 679,63                                                                                                                                                                                                            | 70,59                                                                                                                                                                                                                          | 1,05                                                                                                                                                                                                                           | 0,10                                                                                                                                                         |
| 44,00                                                                                                                                                                                                                      | 25                                                                                                                      | 104,00                                                                                                                                                                           | 732,77                                                                                                                                                                                                            | 73,53                                                                                                                                                                                                                          | 1,18                                                                                                                                                                                                                           | 0,41                                                                                                                                                         |
| 115,00                                                                                                                                                                                                                     | 26                                                                                                                      | 104,00                                                                                                                                                                           | 732,77                                                                                                                                                                                                            | 76,47                                                                                                                                                                                                                          | 1,32                                                                                                                                                                                                                           | 0,60                                                                                                                                                         |
| 106,00                                                                                                                                                                                                                     | 27                                                                                                                      | 106,00                                                                                                                                                                           | 845,05                                                                                                                                                                                                            | 79,41                                                                                                                                                                                                                          | 1,47                                                                                                                                                                                                                           | 0,86                                                                                                                                                         |
| 103,00                                                                                                                                                                                                                     | 28                                                                                                                      | 106,00                                                                                                                                                                           | 845,05                                                                                                                                                                                                            | 82,35                                                                                                                                                                                                                          | 1,64                                                                                                                                                                                                                           | 1,21                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         | •                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 1,69                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         | •                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 2,37                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 3,40                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 5,13                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         | •                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 8,84                                                                                                                                                         |
|                                                                                                                                                                                                                            |                                                                                                                         | ,.                                                                                                                                                                               | 00.2,00                                                                                                                                                                                                           | 0.,00                                                                                                                                                                                                                          | <b>5,0</b> .                                                                                                                                                                                                                   | 5,0 .                                                                                                                                                        |
|                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                              |
|                                                                                                                                                                                                                            | ORES EXTR<br>N TIPICA DI<br>N TIPICA DI                                                                                 | 54,00 30 100,00 31 135,00 32 55,00 33  E VALORES CONSIDERADO ORES EXTREMOS: N TIPICA DE LOS VALORE N TIPICA DE LA VARIABLI                                                       | 54,00 30 115,00 100,00 31 115,00 135,00 32 119,50 55,00 33 135,00 EVALORES CONSIDERADOS:                                                                                                                          | 76,00 29 114,50 1411,48 30 100,00 31 115,00 1449,30 135,00 32 119,50 1812,18 55,00 33 135,00 3372,09  E VALORES CONSIDERADOS: ORES EXTREMOS: 76,9303 MEDIA N TIPICA DE LOS VALORES EXTREMOS: N TIPICA DE LA VARIABLE REDUCIDA: | 76,00 29 114,50 1411,48 85,29 54,00 30 115,00 1449,30 88,24 100,00 31 115,00 1449,30 91,18 135,00 32 119,50 1812,18 94,12 55,00 33 135,00 3372,09 97,06 SEXTREMOS: 76,9303 MEDIA VARIABLE RE N TIPICA DE LA VARIABLE REDUCIDA: | 76,00                                                                                                                                                        |





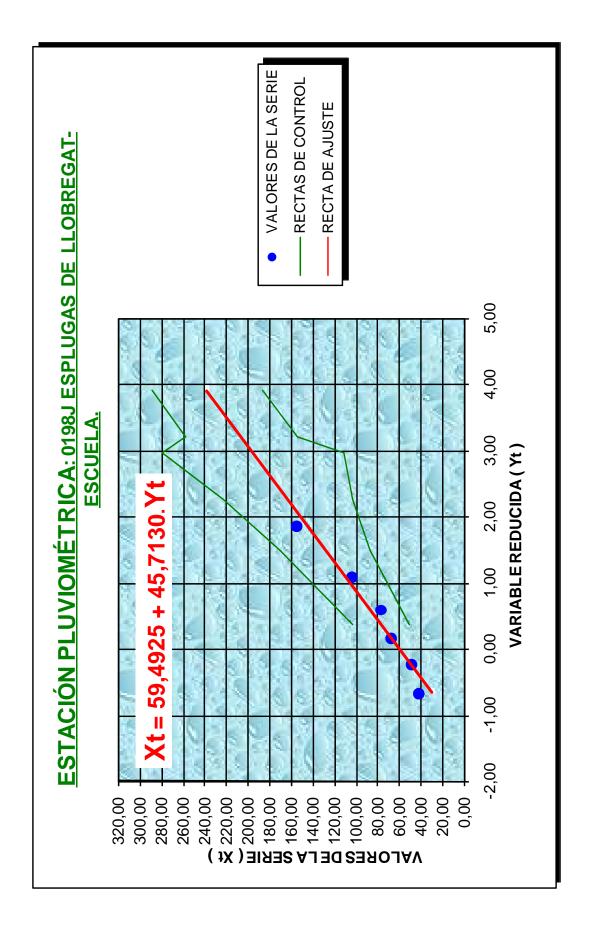

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (01981) ESPLUGAS DE LLOBREGAT 'FINES- TRELLES'.

Longitud: 2° 05′ (W) Latitud: 41° 23′ Alti

Altitud: 145 m.

| AÑO                                                                                                  | LLUVIA MAX.<br>mm/24h                                                                                                                                                                                                                                                                                                                                                               | N° ORDEN<br>m                                                                 | LLUVIA MAX.<br>mm/24h                                                                                                       | (Xi-Xm) <sup>2</sup>                                                                                                                        | PROB.EXT.<br>100m/(n+1)                                                                                                            | VARIABLE<br>REDUCIDA                                                                                                      | (Yi-Ym) <sup>2</sup>                                                                                         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1933<br>1934<br>1935<br>1937<br>1940<br>1941<br>1942<br>1943<br>1946<br>1957<br>1961<br>1962<br>1963 | 36,70<br>113,80<br>64,40<br>41,90<br>67,20<br>54,00<br>49,30<br>73,00<br>63,00<br>82,50<br>84,00<br>54,40<br>43,00                                                                                                                                                                                                                                                                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 36,70<br>41,90<br>43,00<br>49,30<br>54,40<br>63,00<br>64,40<br>67,20<br>73,00<br>75,00<br>82,50<br>84,00<br>87,00<br>113,80 | 855,37<br>578,24<br>526,55<br>277,11<br>142,72<br>133,33<br>8,68<br>2,39<br>1,57<br>49,75<br>81,96<br>274,01<br>325,92<br>443,24<br>2289,94 | 6,25<br>12,50<br>18,75<br>25,00<br>31,25<br>37,50<br>43,75<br>50,00<br>56,25<br>62,50<br>68,75<br>75,00<br>81,25<br>87,50<br>93,75 | -1,02<br>-0,73<br>-0,52<br>-0,33<br>-0,15<br>0,02<br>0,19<br>0,37<br>0,55<br>0,76<br>0,98<br>1,25<br>1,57<br>2,01<br>2,74 | 2,35<br>1,55<br>1,06<br>0,70<br>0,44<br>0,10<br>0,02<br>0,00<br>0,06<br>0,22<br>0,54<br>1,12<br>2,25<br>4,96 |  |  |  |  |  |  |
| MEDIA<br>DESVI<br>DESVI<br>CORRI                                                                     | NUMERO DE VALORES CONSIDERADOS:         15           MEDIA VALORES EXTREMOS:         65,9467         MEDIA VARIABLE REDUCIDA:         0,5128           DESVIACION TIPICA DE LOS VALORES EXTREMOS:         19,9847           DESVIACION TIPICA DE LA VARIABLE REDUCIDA:         1,0206           CORRELACION OBTENIDA:         Xt = A + B.Yt         A = 55,9044         B = 19,5818 |                                                                               |                                                                                                                             |                                                                                                                                             |                                                                                                                                    |                                                                                                                           |                                                                                                              |  |  |  |  |  |  |

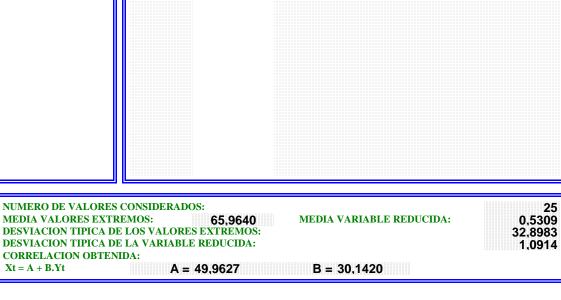


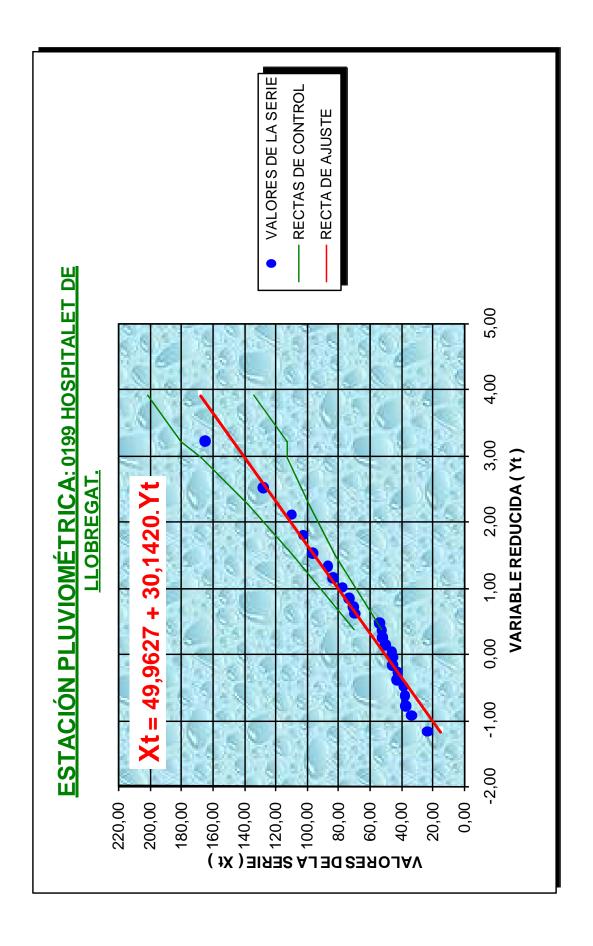

ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (0198J) ESPLUGAS DE LLOBREGAT-ESCUELA . Longitud: 2° 05′ (W) Latitud: 41° 22′

Altitud: 100 m.

| AÑO                                          | LLUVIA MAX.<br>mm/24h                                                                      | N° ORDEN<br>m                       | LLUVIA MAX.<br>mm/24h                                | (Xi-Xm) <sup>2</sup>                                       | PROB.EXT.<br>100m/(n+1)                            | VARIABLE<br>REDUCIDA                           | (Yi-Ym)²                                     |
|----------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------|
| 1913<br>1914<br>1915<br>1916<br>1926<br>1927 | 153,80<br>40,50<br>66,00<br>75,40<br>102,80<br>47,10                                       | 1<br>2<br>3<br>4<br>5<br>6          | 40,50<br>47,10<br>66,00<br>75,40<br>102,80<br>153,80 | 1634,85<br>1144,69<br>223,00<br>30,62<br>478,15<br>5309,55 | 14,29<br>28,57<br>42,86<br>57,14<br>71,43<br>85,71 | -0,67<br>-0,23<br>0,17<br>0,58<br>1,09<br>1,87 | 1,29<br>0,48<br>0,09<br>0,01<br>0,38<br>1,96 |
|                                              |                                                                                            |                                     |                                                      |                                                            |                                                    |                                                |                                              |
|                                              |                                                                                            |                                     |                                                      |                                                            |                                                    |                                                |                                              |
|                                              |                                                                                            |                                     |                                                      |                                                            |                                                    |                                                |                                              |
| MEDIA<br>DESVI<br>DESVI                      | RO DE VALORES (<br>A VALORES EXTRI<br>ACION TIPICA DE<br>ACION TIPICA DE<br>ELACION OBTENI | EMOS:<br>LOS VALORES<br>LA VARIABLE | 80,9333<br>SEXTREMOS:                                | MEDIA                                                      | VARIABLE REI                                       | DUCIDA:                                        | 0,4690<br>38,3425<br>0,8388                  |



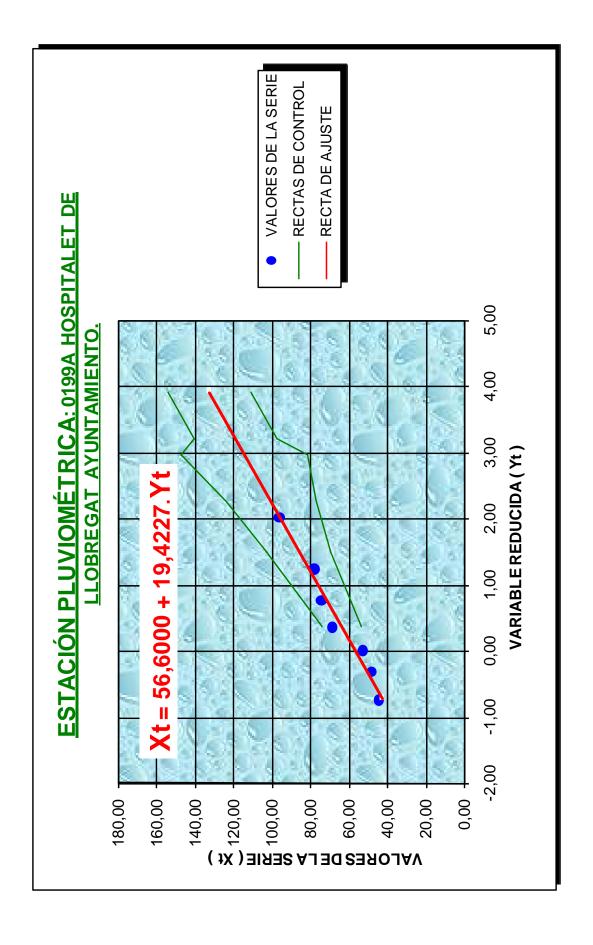


ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (0199) HOSPITALET DE LLOBREGAT .

Longitud: 2° 06′ (W) Altitud: 8 m. Latitud: 41° 21′

| 958<br>959<br>960<br>961<br>962<br>963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976 | 52,40<br>110,00<br>46,20<br>69,60<br>72,20<br>102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80<br>32,70 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 22,30<br>32,70<br>36,40<br>37,70<br>38,70<br>41,80<br>42,40<br>44,60<br>44,70<br>46,20<br>49,00 | 1906,54<br>1106,49<br>874,03<br>798,85<br>743,33<br>583,90<br>555,26<br>456,42<br>452,16<br>390,62 | 3,85<br>7,69<br>11,54<br>15,38<br>19,23<br>23,08<br>26,92<br>30,77<br>34,62 | -1,18<br>-0,94<br>-0,77<br>-0,63<br>-0,50<br>-0,38<br>-0,27<br>-0,16 | 2,93<br>2,17<br>1,69<br>1,34<br>1,06<br>0,83<br>0,64 |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|
| 959<br>960<br>961<br>962<br>963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976        | 110,00<br>46,20<br>69,60<br>72,20<br>102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11            | 32,70<br>36,40<br>37,70<br>38,70<br>41,80<br>42,40<br>44,60<br>44,70<br>46,20                   | 1106,49<br>874,03<br>798,85<br>743,33<br>583,90<br>555,26<br>456,42<br>452,16                      | 7,69<br>11,54<br>15,38<br>19,23<br>23,08<br>26,92<br>30,77                  | -0,94<br>-0,77<br>-0,63<br>-0,50<br>-0,38<br>-0,27                   | 2,17<br>1,69<br>1,34<br>1,06<br>0,83<br>0,64         |
| 960<br>961<br>962<br>963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976               | 46,20<br>69,60<br>72,20<br>102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                             | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                 | 36,40<br>37,70<br>38,70<br>41,80<br>42,40<br>44,60<br>44,70<br>46,20                            | 874,03<br>798,85<br>743,33<br>583,90<br>555,26<br>456,42<br>452,16                                 | 11,54<br>15,38<br>19,23<br>23,08<br>26,92<br>30,77                          | -0,77<br>-0,63<br>-0,50<br>-0,38<br>-0,27                            | 1,69<br>1,34<br>1,06<br>0,83<br>0,64                 |
| 961<br>962<br>963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                      | 69,60<br>72,20<br>102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                      | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                      | 37,70<br>38,70<br>41,80<br>42,40<br>44,60<br>44,70<br>46,20                                     | 798,85<br>743,33<br>583,90<br>555,26<br>456,42<br>452,16                                           | 15,38<br>19,23<br>23,08<br>26,92<br>30,77                                   | -0,63<br>-0,50<br>-0,38<br>-0,27                                     | 1,34<br>1,06<br>0,83<br>0,64                         |
| 962<br>963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                             | 72,20<br>102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                               | 5<br>6<br>7<br>8<br>9<br>10<br>11                           | 38,70<br>41,80<br>42,40<br>44,60<br>44,70<br>46,20                                              | 743,33<br>583,90<br>555,26<br>456,42<br>452,16                                                     | 19,23<br>23,08<br>26,92<br>30,77                                            | -0,50<br>-0,38<br>-0,27                                              | 1,06<br>0,83<br>0,64                                 |
| 963<br>964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                    | 102,40<br>38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                        | 6<br>7<br>8<br>9<br>10<br>11<br>12                          | 41,80<br>42,40<br>44,60<br>44,70<br>46,20                                                       | 583,90<br>555,26<br>456,42<br>452,16                                                               | 23,08<br>26,92<br>30,77                                                     | -0,38<br>-0,27                                                       | 0,83<br>0,64                                         |
| 964<br>965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                           | 38,70<br>22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                                  | 7<br>8<br>9<br>10<br>11<br>12                               | 42,40<br>44,60<br>44,70<br>46,20                                                                | 555,26<br>456,42<br>452,16                                                                         | 26,92<br>30,77                                                              | -0,27                                                                | 0,64                                                 |
| 965<br>966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                                  | 22,30<br>82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                                           | 8<br>9<br>10<br>11<br>12                                    | 44,60<br>44,70<br>46,20                                                                         | 456,42<br>452,16                                                                                   | 30,77                                                                       | •                                                                    | · · · · · · · · · · · · · · · · · · ·                |
| 966<br>967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                                         | 82,70<br>44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                                                    | 9<br>10<br>11<br>12                                         | 44,70<br>46,20                                                                                  | 452,16                                                                                             |                                                                             | O,                                                                   | 0,48                                                 |
| 967<br>968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                                                | 44,70<br>36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                                                             | 10<br>11<br>12                                              | 46,20                                                                                           |                                                                                                    |                                                                             | -0,06                                                                | 0,35                                                 |
| 968<br>969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                                                       | 36,40<br>41,80<br>51,30<br>49,00<br>163,80                                                                                                      | 11<br>12                                                    | •                                                                                               | .1MU D/                                                                                            | 38,46                                                                       | 0,05                                                                 | 0,24                                                 |
| 969<br>970<br>971<br>972<br>973<br>974<br>975<br>976                                                                              | 41,80<br>51,30<br>49,00<br>163,80                                                                                                               | 12                                                          |                                                                                                 | 287,78                                                                                             | 42,31                                                                       | 0,15                                                                 | 0,14                                                 |
| 970<br>971<br>972<br>973<br>974<br>975<br>976                                                                                     | 51,30<br>49,00<br>163,80                                                                                                                        |                                                             | 51,30                                                                                           | 215,03                                                                                             | 46,15                                                                       | 0,26                                                                 | 0,07                                                 |
| 971<br>972<br>973<br>974<br>975<br>976                                                                                            | 49,00<br>163,80                                                                                                                                 |                                                             | 52,40                                                                                           | 183,98                                                                                             | 50,00                                                                       | 0,37                                                                 | 0,03                                                 |
| 972<br>973<br>974<br>975<br>976                                                                                                   | 163,80                                                                                                                                          | 14                                                          | 52,70                                                                                           | 175,93                                                                                             | 53,85                                                                       | 0,48                                                                 | 0,00                                                 |
| 973<br>974<br>975<br>976                                                                                                          | · ·                                                                                                                                             | 15                                                          | 68,80                                                                                           | 8,04                                                                                               | 57,69                                                                       | 0,60                                                                 | 0,00                                                 |
| 974<br>975<br>976                                                                                                                 |                                                                                                                                                 | 16                                                          | 69,60                                                                                           | 13,22                                                                                              | 61,54                                                                       | 0,72                                                                 | 0,04                                                 |
| 975<br>976                                                                                                                        | 42,40                                                                                                                                           | 17                                                          | 72,20                                                                                           | 38,89                                                                                              | 65,38                                                                       | 0,86                                                                 | 0,11                                                 |
| 976                                                                                                                               | 126,80                                                                                                                                          | 18                                                          | 77,50                                                                                           | 133,08                                                                                             | 69,23                                                                       | 1,00                                                                 | 0,22                                                 |
|                                                                                                                                   | 37,70                                                                                                                                           | 19                                                          | 82,70                                                                                           | 280,09                                                                                             | 73,08                                                                       | 1,16                                                                 | 0,40                                                 |
|                                                                                                                                   | 86,70                                                                                                                                           | 20                                                          | 86,70                                                                                           | 429,98                                                                                             | 76,92                                                                       | 1,34                                                                 | 0,65                                                 |
| 978                                                                                                                               | 52,70                                                                                                                                           | 21                                                          | 95,70                                                                                           | 884,23                                                                                             | 80,77                                                                       | 1,54                                                                 | 1,03                                                 |
| 979                                                                                                                               | 44,60                                                                                                                                           | 22                                                          | 102,40                                                                                          | 1327,58                                                                                            | 84,62                                                                       | 1,79                                                                 | 1,58                                                 |
| 980                                                                                                                               | 77,50                                                                                                                                           | 23                                                          | 110,00                                                                                          | 1939,17                                                                                            | 88,46                                                                       | 2,10                                                                 | 2,46                                                 |
| 981                                                                                                                               | 95,70                                                                                                                                           | 24                                                          | 126,80                                                                                          | 3701,02                                                                                            | 92,31                                                                       | 2,53                                                                 | 3,98                                                 |
| 982                                                                                                                               | 68,80                                                                                                                                           | 25                                                          | 163,80                                                                                          | 9571,88                                                                                            | 96,15                                                                       | 3,24                                                                 | 7,33                                                 |
| -00                                                                                                                               | ,                                                                                                                                               |                                                             | ,                                                                                               | .,,                                                                                                | 00,.0                                                                       | ~, <del>_</del> .                                                    | .,                                                   |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
|                                                                                                                                   |                                                                                                                                                 |                                                             |                                                                                                 |                                                                                                    |                                                                             |                                                                      |                                                      |
| UMERC                                                                                                                             | DE VALORES                                                                                                                                      | CONSIDERADO                                                 | OS:                                                                                             |                                                                                                    |                                                                             |                                                                      | 2                                                    |
|                                                                                                                                   | VALORES EXTR                                                                                                                                    |                                                             | 65.9640                                                                                         | MEDIA                                                                                              | VARIABLE REI                                                                | DUCIDA                                                               | 0,530                                                |






ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (0199A) HOSPITALET DE LLOBREGAT. AYUNTAMIENTO.

Longitud: 2° 05′ (W) Latitud: 41° 21′ Altitud: 40 m.

| AÑO                                                  | LLUVIA MAX.<br>mm/24h                                                                                  | N° ORDEN<br>m                                  | LLUVIA MAX.<br>mm/24h  | (Xi-Xm) <sup>2</sup>                                            | PROB.EXT.<br>100m/(n+1) | VARIABLE<br>REDUCIDA | (Yi-Ym) <sup>2</sup>                                 |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|-----------------------------------------------------------------|-------------------------|----------------------|------------------------------------------------------|
| 1978<br>1979<br>1980<br>1981<br>1982<br>1986<br>1987 | mm/24h 52,70 44,60 77,50 95,70 68,80 73,40                                                             |                                                |                        | 452,47<br>305,25<br>173,49<br>8,58<br>56,68<br>135,22<br>889,74 |                         |                      | 1,46<br>0,65<br>0,21<br>0,01<br>0,08<br>0,59<br>2,36 |
| MEDIA<br>DESVI<br>DESVI<br>CORR                      | CRO DE VALORES<br>A VALORES EXTR<br>IACION TIPICA DE<br>IACION TIPICA DE<br>ELACION OBTENI<br>A + B.Yt | EMOS:<br>E LOS VALORE<br>E LA VARIABLE<br>IDA: | 65,8714<br>S EXTREMOS: |                                                                 | VARIABLE RE<br>19,4227  | DUCIDA:              | 7<br>0,4774<br>16,9934<br>0,8749                     |



ESTUDIO INFORMATIVO: INTEGRACIÓN DEL FERROCARRIL EN SANT FELIÚ DE LLOBREGAT.

ESTACIÓN: (0200) CORNELLA DE LLOBREGAT.

Longitud: 2° 03′ (W) Latitud: 41° 21′

Altitud: 13 m.

| AÑO  | LLUVIA MAX.<br>mm/24h | Nº ORDEN<br>m | LLUVIA MAX.<br>mm/24h | (Xi-Xm) <sup>2</sup> | PROB.EXT.<br>100m/(n+1) | VARIABLE<br>REDUCIDA | (Yi-Ym) <sup>2</sup> |
|------|-----------------------|---------------|-----------------------|----------------------|-------------------------|----------------------|----------------------|
| 1942 | 91,80                 | 1             | 36,50                 | 2684,78              | 2,08                    | -1,35                | 3,61                 |
| 1943 | 75,00                 | 2             | 43,00                 | 2053,44              | 4,17                    | -1,16                | 2,90                 |
| 1945 | 86,00                 | 3             | 44,00                 | 1963,81              | 6,25                    | -1,02                | 2,46                 |
| 1946 | 124,00                | 4             | 45,30                 | 1850,28              | 8,33                    | -0,91                | 2,12                 |
| 1947 | 46,00                 | 5             | 46,00                 | 1790,55              | 10,42                   | -0,82                | 1,86                 |
| 1948 | 65,50                 | 6             | 47,00                 | 1706,92              | 12,50                   | -0,73                | 1,64                 |
| 1949 | 74,00                 | 7             | 48,00                 | 1625,29              | 14,58                   | -0,66                | 1,45                 |
| 1950 | 49,00                 | 8             | 49,00                 | 1545,66              | 16,67                   | -0,58                | 1,28                 |
| 1951 | 80,00                 | 9             | 50,50                 | 1429,97              | 18,75                   | -0,52                | 1,13                 |
| 1952 | 230,00                | 10            | 51,00                 | 1392,40              | 20,83                   | -0,45                | 0,99                 |
| 1954 | 85,00                 | 11            | 52,00                 | 1318,77              | 22,92                   | -0,39                | 0,87                 |
| 1955 | 53,00                 | 12            | 53,00                 | 1247,14              | 25,00                   | -0,33                | 0,76                 |
| 1956 | 69,00                 | 13            | 53,00                 | 1247,14              | 27,08                   | -0,27                | 0,66                 |
| 1957 | 221,00                | 14            | 57,00                 | 980,62               | 29,17                   | -0,21                | 0,57                 |
| 1959 | 180,00                | 15            | 57,00                 | 980,62               | 31,25                   | -0,15                | 0,49                 |
| 1962 | 175,00                | 16            | 59,00                 | 859,36               | 33,33                   | -0,09                | 0,41                 |
| 1963 | 160,50                | 17            | 62,00                 | 692,47               | 35,42                   | -0,04                | 0,34                 |
| 1964 | 194,00                | 18            | 65,50                 | 520,52               | 37,50                   | 0,02                 | 0,28                 |
| 1965 | 50,50                 | 19            | 65,80                 | 506,92               | 39,58                   | 0,08                 | 0,22                 |
| 1967 | 52,00                 | 20            | 66,00                 | 497,95               | 41,67                   | 0,13                 | 0,17                 |
| 1968 | 53,00                 | 21            | 66,20                 | 489,07               | 43,75                   | 0,19                 | 0,13                 |
| 1969 | 66,00                 | 22            | 67,50                 | 433,26               | 45,83                   | 0,25                 | 0,09                 |
| 1970 | 43,00                 | 23            | 68,70                 | 384,74               | 47,92                   | 0,31                 | 0,06                 |
| 1971 | 68,70                 | 24            | 69,00                 | 373,07               | 50,00                   | 0,37                 | 0,03                 |
| 1972 | 160,00                | 25            | 70,00                 | 335,44               | 52,08                   | 0,43                 | 0,01                 |
| 1973 | 45,30                 | 26            | 70,00                 | 335,44               | 54,17                   | 0,49                 | 0,00                 |
| 1974 | 44,00                 | 27            | 70,00                 | 335,44               | 56,25                   | 0,55                 | 0,00                 |
| 1975 | 177,00                | 28            | 74,00                 | 204,92               | 58,33                   | 0,62                 | 0,00                 |
| 1976 | 65,80                 | 29            | 74,00                 | 204,92               | 60,42                   | 0,69                 | 0,01                 |
| 1977 | 109,50                | 30            | 75,00                 | 177,29               | 62,50                   | 0,76                 | 0,02                 |
| 1978 | 57,00                 | 31            | 80,00                 | 69,14                | 64,58                   | 0,83                 | 0,04                 |
| 1979 | 36,50                 | 32            | 82,00                 | 39,88                | 66,67                   | 0,90                 | 0,08                 |
| 1979 | 67,50                 | 33            | 85,00                 | 10,99                | 68,75                   | 0,98                 | 0,13<br>0,19         |
| 1980 | 57,00                 | 33<br>34      | 86,00                 | 5,36                 | 70,83                   | 1,06                 | 0,19                 |
| 1983 | 47,00                 | 35            | 91,80                 | 12,15                | 70,63                   | 1,15                 | 0,27<br>0,37         |
| 1984 | 59,00                 | 36            | 106,00                | 312,76               | 75,00                   | 1,15                 | 0,37<br>0,49         |
| 1985 | 70,00                 | 37            | 109,50                | 448,81               | 77,08                   | 1,35                 | 0,49                 |
| 1986 | 70,00<br>51,00        | 38            | 124,00                | 1273,43              | 77,00                   | 1,45                 | 0,82                 |
| 1987 | 48,00                 | 39            | 134,00                | 2087,13              | 81,25                   | 1,45                 | 0,62<br>1,05         |
| 1988 | 82,00<br>82,00        | 39<br>40      | 160,00                | 5138,75              | 83,33                   | 1,70                 | 1,05<br>1,33         |
| 1989 | 134,00                | 40<br>41      | 160,50                | 5210,69              | 85,42                   | 1,70                 | 1,33<br>1,69         |
| 1909 | 74,00                 | 41<br>42      | 175,00                | 7514,31              | 87,50                   | 2,01                 |                      |
| 1990 | 74,00<br>70,00        | 42<br>43      | 173,00                | 7865,05              |                         | 2,01                 | 2,15<br>2.76         |
| 1991 | 62,00                 | 43<br>44      | 180,00                | 8406,16              | 89,58<br>91,67          |                      | 2,76<br>3,59         |
| 1992 | 106,00                | 44<br>45      | 194,00                | 11169,34             | 93,75                   | 2,44<br>2,74         | 3,59<br>4,81         |
| 1993 | 66,20                 | 45<br>46      | 221,00                | 17605,34             | 95,83                   | 2,74<br>3,16         |                      |
| 1994 | 70,00                 | 46<br>47      | 230,00                | 20074,67             | 95,63                   | 3,86                 | 6,81<br>10,98        |
| 1990 | 70,00                 | 41            | 200,00                | 20014,01             | 31,32                   | 5,00                 | 10,30                |



